當前位置: 首頁>>代碼示例>>Python>>正文


Python random.lognormvariate方法代碼示例

本文整理匯總了Python中random.lognormvariate方法的典型用法代碼示例。如果您正苦於以下問題:Python random.lognormvariate方法的具體用法?Python random.lognormvariate怎麽用?Python random.lognormvariate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在random的用法示例。


在下文中一共展示了random.lognormvariate方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _add_initial_log_distribution

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def _add_initial_log_distribution(list_population, mu, sigma):
		"""
			Adding a initial distribution

			@attention: Values for first sample

			@param list_population: Main list for all distributions
			@type : list[list[float]]
			@param mu: Mean
			@type mu: float
			@param sigma: standard deviation
			@type sigma: float

			@return: Nothing
			@rtype: None
		"""
		assert isinstance(list_population, list)
		assert isinstance(mu, (float, int, long))
		assert isinstance(sigma, (float, int, long))
		for index in xrange(len(list_population)):
			list_population[index][0] = random.lognormvariate(mu, sigma) 
開發者ID:CAMI-challenge,項目名稱:CAMISIM,代碼行數:23,代碼來源:populationdistribution.py

示例2: _add_timeseries_lognorm

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def _add_timeseries_lognorm(list_population, mu, sigma):
		"""
			each abundance profile is produced by
			- draw new value from lognorm distribution
			- add old and new value and divide by 2

			@attention:

			@param list_population: Main list for all distributions
			@type : list[list[float]]
			@param mu: Mean
			@type mu: float
			@param sigma: standard deviation
			@type sigma: float

			@return: Nothing
			@rtype: None
		"""
		assert isinstance(list_population, list)
		assert isinstance(mu, (float, int, long))
		assert isinstance(sigma, (float, int, long))
		for index_p in xrange(len(list_population)):
			for index_i in xrange(len(list_population[index_p])-1):
				list_population[index_p][index_i+1] = (list_population[index_p][index_i] + random.lognormvariate(mu, sigma))/2 
開發者ID:CAMI-challenge,項目名稱:CAMISIM,代碼行數:26,代碼來源:populationdistribution.py

示例3: _add_differential

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def _add_differential(list_population, mu, sigma):
		"""
			Abundance is drawn independently from previous lognorm distributions

			@attention:

			@param list_population: Main list for all distributions
			@type : list[list[float]]
			@param mu: Mean
			@type mu: float
			@param sigma: standard deviation
			@type sigma: float

			@return: Nothing
			@rtype: None
		"""
		assert isinstance(list_population, list)
		assert isinstance(mu, (float, int, long))
		assert isinstance(sigma, (float, int, long))
		for index_p in xrange(len(list_population)):
			for index_i in xrange(len(list_population[index_p])-1):
				list_population[index_p][index_i+1] = random.lognormvariate(mu, sigma) 
開發者ID:CAMI-challenge,項目名稱:CAMISIM,代碼行數:24,代碼來源:populationdistribution.py

示例4: get_dist

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def get_dist(d):
    return {
        'randrange': random.randrange, # start, stop, step
        'randint': random.randint, # a, b
        'random': random.random,
        'uniform': random, # a, b
        'triangular': random.triangular, # low, high, mode
        'beta': random.betavariate, # alpha, beta
        'expo': random.expovariate, # lambda
        'gamma': random.gammavariate, # alpha, beta
        'gauss': random.gauss, # mu, sigma
        'lognorm': random.lognormvariate, # mu, sigma
        'normal': random.normalvariate, # mu, sigma
        'vonmises': random.vonmisesvariate, # mu, kappa
        'pareto': random.paretovariate, # alpha
        'weibull': random.weibullvariate # alpha, beta
    }.get(d) 
開發者ID:cerob,項目名稱:slicesim,代碼行數:19,代碼來源:__main__.py

示例5: test_Density

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def test_Density(self):
        """Statistics.Density test"""
        import random

        ## a lognormal density distribution the log of which has mean 1.0
        ## and stdev 0.5
        self.X = [ (x, p_lognormal(x, 1.0, 0.5))
                   for x in N0.arange(0.00001, 50, 0.001)]

        alpha = 2.
        beta = 0.6

        self.R = [ random.lognormvariate( alpha, beta )
                   for i in range( 10000 )]

        p = logConfidence( 6.0, self.R )[0]#, area(6.0, alpha, beta) 
開發者ID:graik,項目名稱:biskit,代碼行數:18,代碼來源:Density.py

示例6: test_heap

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def test_heap(self):
        iterations = 5000
        maxblocks = 50
        blocks = []

        # create and destroy lots of blocks of different sizes
        for i in xrange(iterations):
            size = int(random.lognormvariate(0, 1) * 1000)
            b = multiprocessing.heap.BufferWrapper(size)
            blocks.append(b)
            if len(blocks) > maxblocks:
                i = random.randrange(maxblocks)
                del blocks[i]

        # get the heap object
        heap = multiprocessing.heap.BufferWrapper._heap

        # verify the state of the heap
        all = []
        occupied = 0
        heap._lock.acquire()
        self.addCleanup(heap._lock.release)
        for L in heap._len_to_seq.values():
            for arena, start, stop in L:
                all.append((heap._arenas.index(arena), start, stop,
                            stop-start, 'free'))
        for arena, start, stop in heap._allocated_blocks:
            all.append((heap._arenas.index(arena), start, stop,
                        stop-start, 'occupied'))
            occupied += (stop-start)

        all.sort()

        for i in range(len(all)-1):
            (arena, start, stop) = all[i][:3]
            (narena, nstart, nstop) = all[i+1][:3]
            self.assertTrue((arena != narena and nstart == 0) or
                            (stop == nstart)) 
開發者ID:IronLanguages,項目名稱:ironpython2,代碼行數:40,代碼來源:test_multiprocessing.py

示例7: test_heap

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def test_heap(self):
        iterations = 5000
        maxblocks = 50
        blocks = []

        # create and destroy lots of blocks of different sizes
        for i in range(iterations):
            size = int(random.lognormvariate(0, 1) * 1000)
            b = multiprocessing.heap.BufferWrapper(size)
            blocks.append(b)
            if len(blocks) > maxblocks:
                i = random.randrange(maxblocks)
                del blocks[i]

        # get the heap object
        heap = multiprocessing.heap.BufferWrapper._heap

        # verify the state of the heap
        all = []
        occupied = 0
        heap._lock.acquire()
        self.addCleanup(heap._lock.release)
        for L in list(heap._len_to_seq.values()):
            for arena, start, stop in L:
                all.append((heap._arenas.index(arena), start, stop,
                            stop-start, 'free'))
        for arena, start, stop in heap._allocated_blocks:
            all.append((heap._arenas.index(arena), start, stop,
                        stop-start, 'occupied'))
            occupied += (stop-start)

        all.sort()

        for i in range(len(all)-1):
            (arena, start, stop) = all[i][:3]
            (narena, nstart, nstop) = all[i+1][:3]
            self.assertTrue((arena != narena and nstart == 0) or
                            (stop == nstart)) 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:40,代碼來源:_test_multiprocessing.py

示例8: sample

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def sample(self):
        result = self._scale * random.lognormvariate(self._mu, self._sigma)
        if self._maximum is not None and result > self._maximum:
            for _ignore in range(10):
                result = self._scale * random.lognormvariate(self._mu, self._sigma)
                if result <= self._maximum:
                    break
            else:
                raise ValueError("Unable to generate LogNormalDistribution sample within required range")
        return result 
開發者ID:apple,項目名稱:ccs-calendarserver,代碼行數:12,代碼來源:stats.py

示例9: test_lognormal

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def test_lognormal(self):
        """Statistics.lognormal test"""
        import random
        import Biskit.gnuplot as gnuplot
        import Biskit.hist as H

        cr = []
        for i in range( 10000 ):
            ## Some random values drawn from the same lognormal distribution 

            alpha = 1.5
            beta = .7
            x = 10.

            R = [ random.lognormvariate( alpha, beta ) for j in range( 10 ) ]

            cr += [ logConfidence( x, R )[0] ]


        ca = logArea( x, alpha, beta )

        if self.local:
            gnuplot.plot( H.density( N0.array(cr) - ca, 100 ) )

            globals().update( locals() )

        self.assertAlmostEqual( ca,  0.86877651432955771, 7) 
開發者ID:graik,項目名稱:biskit,代碼行數:29,代碼來源:lognormal.py

示例10: callback_liveOut_pipe_in

# 需要導入模塊: import random [as 別名]
# 或者: from random import lognormvariate [as 別名]
def callback_liveOut_pipe_in(named_count, state_uid, **kwargs):
    'Handle something changing the value of the input pipe or the associated state uid'

    cache_key = _get_cache_key(state_uid)
    state = cache.get(cache_key)

    # If nothing in cache, prepopulate
    if not state:
        state = {}

    # Guard against missing input on startup
    if not named_count:
        named_count = {}

    # extract incoming info from the message and update the internal state
    user = named_count.get('user', None)
    click_colour = named_count.get('click_colour', None)
    click_timestamp = named_count.get('click_timestamp', 0)

    if click_colour:
        colour_set = state.get(click_colour, None)

        if not colour_set:
            colour_set = [(None, 0, 100) for i in range(5)]

        _, last_ts, prev = colour_set[-1]

        # Loop over all existing timestamps and find the latest one
        if not click_timestamp or click_timestamp < 1:
            click_timestamp = 0

            for _, the_colour_set in state.items():
                _, lts, _ = the_colour_set[-1]
                if lts > click_timestamp:
                    click_timestamp = lts

            click_timestamp = click_timestamp + 1000

        if click_timestamp > last_ts:
            colour_set.append((user, click_timestamp, prev * random.lognormvariate(0.0, 0.1)),)
            colour_set = colour_set[-100:]

        state[click_colour] = colour_set
        cache.set(cache_key, state, 3600)

    return "(%s,%s)" % (cache_key, click_timestamp) 
開發者ID:GibbsConsulting,項目名稱:django-plotly-dash,代碼行數:48,代碼來源:plotly_apps.py


注:本文中的random.lognormvariate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。