當前位置: 首頁>>代碼示例>>Python>>正文


Python random.betavariate方法代碼示例

本文整理匯總了Python中random.betavariate方法的典型用法代碼示例。如果您正苦於以下問題:Python random.betavariate方法的具體用法?Python random.betavariate怎麽用?Python random.betavariate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在random的用法示例。


在下文中一共展示了random.betavariate方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_zeroinputs

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def test_zeroinputs(self):
        # Verify that distributions can handle a series of zero inputs'
        g = random.Random()
        x = [g.random() for i in range(50)] + [0.0]*5
        g.random = x[:].pop; g.uniform(1,10)
        g.random = x[:].pop; g.paretovariate(1.0)
        g.random = x[:].pop; g.expovariate(1.0)
        g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
        g.random = x[:].pop; g.normalvariate(0.0, 1.0)
        g.random = x[:].pop; g.gauss(0.0, 1.0)
        g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
        g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
        g.random = x[:].pop; g.gammavariate(0.01, 1.0)
        g.random = x[:].pop; g.gammavariate(1.0, 1.0)
        g.random = x[:].pop; g.gammavariate(200.0, 1.0)
        g.random = x[:].pop; g.betavariate(3.0, 3.0)
        g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0) 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:20,代碼來源:test_random.py

示例2: test

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def test (mean_ratio,base_rate,length,alpha_pos=2,alpha_neg=2):
        print "\n *** ScoringRule(mean_ratio=%d,base_rate=%f,length=%d,alpha: %d/%d)" % (mean_ratio,base_rate,length,alpha_pos,alpha_neg)
        assert mean_ratio > 1
        mean_neg = base_rate / (mean_ratio * base_rate + 1 - base_rate)
        beta_neg = alpha_neg * (1-mean_neg) / mean_neg
        mean_pos = min(1-base_rate,mean_ratio * mean_neg)
        beta_pos = alpha_pos * (1-mean_pos) / mean_pos
        sr = ScoringRule("mr={mr:g}".format(mr=mean_ratio))
        lq = LiftQuality(sr.title)
        for _ in xrange(int(round(base_rate*length))):
            score = random.betavariate(alpha_pos,beta_pos)
            sr.add(True,score)
            lq.add(True,score)
        for _ in xrange(int(round(length*(1-base_rate)))):
            score = random.betavariate(alpha_neg,beta_neg)
            sr.add(False,score)
            lq.add(False,score)
        print sr
        print lq 
開發者ID:DeloitteHux,項目名稱:proficiency-metric,代碼行數:21,代碼來源:predeval.py

示例3: get_dist

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def get_dist(d):
    return {
        'randrange': random.randrange, # start, stop, step
        'randint': random.randint, # a, b
        'random': random.random,
        'uniform': random, # a, b
        'triangular': random.triangular, # low, high, mode
        'beta': random.betavariate, # alpha, beta
        'expo': random.expovariate, # lambda
        'gamma': random.gammavariate, # alpha, beta
        'gauss': random.gauss, # mu, sigma
        'lognorm': random.lognormvariate, # mu, sigma
        'normal': random.normalvariate, # mu, sigma
        'vonmises': random.vonmisesvariate, # mu, kappa
        'pareto': random.paretovariate, # alpha
        'weibull': random.weibullvariate # alpha, beta
    }.get(d) 
開發者ID:cerob,項目名稱:slicesim,代碼行數:19,代碼來源:__main__.py

示例4: weighted_choice

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def weighted_choice(population, n):
    """Randomly select n unique individuals from a weighted population, fitness determines probability of being selected"""
    def random_index_betavariate(pop_size):
        #has a higher probability of returning index of item at the head of the list
        alpha = 1
        beta = 2.5
        return int(random.betavariate(alpha, beta)*pop_size)

    def random_index_weighted(pop_size):
        """might lead to problems: if there's only one valid configuration this method only returns that configuration"""
        weights = [w for _, w in population]
        #invert because lower is better
        inverted_weights = [1.0/w for w in weights]
        prefix_sum = np.cumsum(inverted_weights)
        total_weight = sum(inverted_weights)
        randf = random.random()*total_weight
        #return first index of prefix_sum larger than random number
        return next(i for i,v in enumerate(prefix_sum) if v > randf)

    random_index = random_index_betavariate

    indices = [random_index(len(population)) for _ in range(n)]
    chosen = []
    for ind in indices:
        while ind in chosen:
            ind = random_index(len(population))
        chosen.append(ind)

    return [population[ind][0] for ind in chosen] 
開發者ID:benvanwerkhoven,項目名稱:kernel_tuner,代碼行數:31,代碼來源:genetic_algorithm.py

示例5: test_betavariate_return_zero

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def test_betavariate_return_zero(self, gammavariate_mock):
        # betavariate() returns zero when the Gamma distribution
        # that it uses internally returns this same value.
        gammavariate_mock.return_value = 0.0
        self.assertEqual(0.0, random.betavariate(2.71828, 3.14159)) 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:7,代碼來源:test_random.py

示例6: skewedGauss

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def skewedGauss(mu, sigma, bounds, upperSkewed=True):
    raw = gauss(mu, sigma)

    # Quicker to check an extra condition than do unnecessary math. . . .
    if raw < mu and not upperSkewed:
        out = ((mu - bounds[0]) / (3 * sigma)) * raw + ((mu * (bounds[0] - (mu - 3 * sigma))) / (3 * sigma))
    elif raw > mu and upperSkewed:
        out = ((mu - bounds[1]) / (3 * -sigma)) * raw + ((mu * (bounds[1] - (mu + 3 * sigma))) / (3 * -sigma))
    else:
        out = raw

    return out


# @todo create a def for generating an alpha and beta for a beta distribution
#   given a mu, sigma, and an upper and lower bound.  This proved faster in
#   profiling in addition to providing a much better distribution curve
#   provided multiple iterations happen within this function; otherwise it was
#   slower.
#   This might be a scratch because of the bounds placed on mu and sigma:
#
#   For alpha > 1 and beta > 1:
#   mu^2 - mu^3           mu^3 - mu^2 + mu
#   ----------- < sigma < ----------------
#      1 + mu                  2 - mu
#
##def generateBeta(mu, sigma, scale, repitions=1):
##    results = []
##
##    return results

# Creates rock objects: 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:34,代碼來源:rockgen.py

示例7: get_day_color

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def get_day_color():
    #return (int(800 + (5000 * betavariate(0.2, 0.9))), randint(0, 10000), int(65535 * betavariate(0.5, 1)), randint(3500, 5000))
    #return (randint(11739, 30836), randint(0, 10000), int(65535 * betavariate(0.15, 1)), randint(3500, 5000))
    return (randint(11739, 30836), randint(3000, 10000), int(65535 * betavariate(0.15, 1)), randint(3000, 4000)) 
開發者ID:mclarkk,項目名稱:lifxlan,代碼行數:6,代碼來源:tilechain_shimmering_leaves.py

示例8: get_fire_color

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def get_fire_color():
    return (int(800 + (5000 * betavariate(0.2, 0.9))), randint(60000, 65535), int(65535 * betavariate(0.05, 1)), randint(2500, 3500)) 
開發者ID:mclarkk,項目名稱:lifxlan,代碼行數:4,代碼來源:tilechain_coals.py

示例9: Random

# 需要導入模塊: import random [as 別名]
# 或者: from random import betavariate [as 別名]
def Random(self):
        """Generates a random variate from this distribution."""
        return random.betavariate(self.alpha, self.beta) 
開發者ID:AllenDowney,項目名稱:DataExploration,代碼行數:5,代碼來源:thinkstats2.py


注:本文中的random.betavariate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。