當前位置: 首頁>>代碼示例>>Python>>正文


Python quandl.get方法代碼示例

本文整理匯總了Python中quandl.get方法的典型用法代碼示例。如果您正苦於以下問題:Python quandl.get方法的具體用法?Python quandl.get怎麽用?Python quandl.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在quandl的用法示例。


在下文中一共展示了quandl.get方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_price_quandl

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def get_price_quandl(self,ticker ):
        try:
            if Cache.data_request_delay != None:
                time.sleep(Cache.data_request_delay)
            if Cache.quandl_key != None:
                df = quandl.get("WIKI/"+ticker, authtoken=Cache.quandl_key)
            else:
                df = quandl.get("WIKI/"+ticker)
        except quandl.errors.quandl_error.NotFoundError as e:
            print("WIKI/"+ticker)
            raise e

        df = df[['Adj. Open',  'Adj. High',  'Adj. Low',  'Adj. Close', 'Adj. Volume']]
        df.rename(columns={'Adj. Open':'Open','Adj. High':'High',  'Adj. Low':'Low',  'Adj. Close':'Close', 'Adj. Volume':'Volume'},inplace = True)
        df.dropna(inplace=True)
        return df 
開發者ID:geome-mitbbs,項目名稱:QTS_Research,代碼行數:18,代碼來源:Data_API.py

示例2: getStocksList

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def getStocksList():
    # https://www.quandl.com/api/v3/databases/HKEX/codes?api_key=X1xf_1YJLkT9mdxDj13v
    # down the zip file above and unzip to the _share folder
    # rename the stock code name from "HKEX/XXXX" to "XXXX"
    Config = configparser.ConfigParser()
    Config.read("../../config.ini")
    dir = Config.get('Paths', 'STOCK_HK')
    
    if os.path.exists(dir) == False: 
        os.makedirs(dir)

    share_dir = dir + Config.get('Paths', 'CSV_SHARE')
    if os.path.exists(share_dir) == False: 
        os.makedirs(share_dir)

    filename = share_dir + 'HKEX-datasets-codes.csv'

    if os.path.exists(filename):
        listData = pd.read_csv(filename)
        listData = listData[listData['Code'].astype(str).str.isdigit()]
        return listData['Code'].values.tolist()
    return [] 
開發者ID:doncat99,項目名稱:StockRecommendSystem,代碼行數:24,代碼來源:Fetch_Data_Stock_HK_Daily.py

示例3: ef_minimum_volatility

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def ef_minimum_volatility(self, verbose=False):
        """Interface to
        ``finquant.efficient_frontier.EfficientFrontier.minimum_volatility``.

        Finds the portfolio with the minimum Volatility.

        :Input:
         :verbose: ``boolean`` (default= ``False``), whether to print out properties
             or not.

        :Output:
         :df_weights: a ``pandas.DataFrame`` of weights/allocation of stocks within
             the optimised portfolio.
        """
        # let EfficientFrontier.efficient_frontier handle input arguments
        # get/create instance of EfficientFrontier
        ef = self._get_ef()
        # perform optimisation
        opt_weights = ef.minimum_volatility()
        # if verbose==True, print out results
        ef.properties(verbose=verbose)
        return opt_weights 
開發者ID:fmilthaler,項目名稱:FinQuant,代碼行數:24,代碼來源:portfolio.py

示例4: ef_maximum_sharpe_ratio

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def ef_maximum_sharpe_ratio(self, verbose=False):
        """Interface to
        ``finquant.efficient_frontier.EfficientFrontier.maximum_sharpe_ratio``.

        Finds the portfolio with the maximum Sharpe Ratio, also called the
        tangency portfolio.

        :Input:
         :verbose: ``boolean`` (default= ``False``), whether to print out properties
             or not.

        :Output:
         :df_weights: a ``pandas.DataFrame`` of weights/allocation of stocks within
             the optimised portfolio.
        """
        # let EfficientFrontier.efficient_frontier handle input arguments
        # get/create instance of EfficientFrontier
        ef = self._get_ef()
        # perform optimisation
        opt_weights = ef.maximum_sharpe_ratio()
        # if verbose==True, print out results
        ef.properties(verbose=verbose)
        return opt_weights 
開發者ID:fmilthaler,項目名稱:FinQuant,代碼行數:25,代碼來源:portfolio.py

示例5: ef_efficient_return

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def ef_efficient_return(self, target, verbose=False):
        """Interface to
        ``finquant.efficient_frontier.EfficientFrontier.efficient_return``.

        Finds the portfolio with the minimum Volatility for a given target return.

        :Input:
         :target: ``float``, the target return of the optimised portfolio.
         :verbose: ``boolean`` (default= ``False``), whether to print out properties
             or not.

        :Output:
         :df_weights: a ``pandas.DataFrame`` of weights/allocation of stocks within
             the optimised portfolio.
        """
        # let EfficientFrontier.efficient_frontier handle input arguments
        # get/create instance of EfficientFrontier
        ef = self._get_ef()
        # perform optimisation
        opt_weights = ef.efficient_return(target)
        # if verbose==True, print out results
        ef.properties(verbose=verbose)
        return opt_weights 
開發者ID:fmilthaler,項目名稱:FinQuant,代碼行數:25,代碼來源:portfolio.py

示例6: ef_efficient_volatility

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def ef_efficient_volatility(self, target, verbose=False):
        """Interface to
        ``finquant.efficient_frontier.EfficientFrontier.efficient_volatility``.

        Finds the portfolio with the maximum Sharpe Ratio for a given
        target Volatility.

        :Input:
         :target: ``float``, the target Volatility of the optimised portfolio.
         :verbose: ``boolean`` (default= ``False``), whether to print out properties
             or not.

        :Output:
         :df_weights: a ``pandas.DataFrame`` of weights/allocation of stocks within
             the optimised portfolio.
        """
        # let EfficientFrontier.efficient_frontier handle input arguments
        # get/create instance of EfficientFrontier
        ef = self._get_ef()
        # perform optimisation
        opt_weights = ef.efficient_volatility(target)
        # if verbose==True, print out results
        ef.properties(verbose=verbose)
        return opt_weights 
開發者ID:fmilthaler,項目名稱:FinQuant,代碼行數:26,代碼來源:portfolio.py

示例7: ef_plot_optimal_portfolios

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def ef_plot_optimal_portfolios(self):
        """Interface to
        ``finquant.efficient_frontier.EfficientFrontier.plot_optimal_portfolios``.

        Plots markers of the optimised portfolios for

        - minimum Volatility, and
        - maximum Sharpe Ratio.
        """
        # let EfficientFrontier.efficient_frontier handle input arguments
        # get/create instance of EfficientFrontier
        ef = self._get_ef()
        # plot efficient frontier
        ef.plot_optimal_portfolios()

    # optimising the investments with the efficient frontier class 
開發者ID:fmilthaler,項目名稱:FinQuant,代碼行數:18,代碼來源:portfolio.py

示例8: mc_optimisation

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def mc_optimisation(self, num_trials=1000):
        """Interface to
        ``finquant.monte_carlo.MonteCarloOpt.optimisation``.

        Optimisation of the portfolio by performing a Monte Carlo
        simulation.

        :Input:
         :num_trials: ``int`` (default: ``1000``), number of portfolios to be
             computed, each with a random distribution of weights/allocation
             in each stock.

        :Output:
         :opt_w: ``pandas.DataFrame`` with optimised investment strategies for maximum
             Sharpe Ratio and minimum Volatility.
         :opt_res: ``pandas.DataFrame`` with Expected Return, Volatility and Sharpe Ratio
             for portfolios with minimum Volatility and maximum Sharpe Ratio.
        """
        # dismiss previous instance of mc, as we are performing a new MC optimisation:
        self.mc = None
        # get instance of MonteCarloOpt
        mc = self._get_mc(num_trials)
        opt_weights, opt_results = mc.optimisation()
        return opt_weights, opt_results 
開發者ID:fmilthaler,項目名稱:FinQuant,代碼行數:26,代碼來源:portfolio.py

示例9: download_instrument

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def download_instrument(self, instrument, **kwagrs):
        recent = kwagrs.get('recent', False)
        if recent:
            c = instrument.roll_progression().tail(1).iloc[0] - 100 #-100 here rolls it back one year
        else:
            c = str(instrument.first_contract) # Download all contracts
        fail_count = 0
        # Since quandl doesn't seem to have an API function to list all available contracts,
        # we just loop and download them one by one until no data can be found for the next
        logger.info('Downloading contracts for instrument: %s' % instrument.name)
        while fail_count <= 12:
            # print(c)
            if self.download_contract(instrument, c):
                fail_count = 0
            else:
                fail_count += 1
                # Just try one more time in case of a network error
                self.download_contract(instrument, c)
            c = instrument.next_contract(c)
        logger.debug('More than 12 missing contracts in a row - ending the downloading'
                     ' for the instrument %s' % instrument.name)
        return True 
開發者ID:chrism2671,項目名稱:PyTrendFollow,代碼行數:24,代碼來源:quandl_provider.py

示例10: test

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def test(year, stock, window=10, up=0.05, down=0.05, get_plots=True, verbose=True):
	quandl.ApiConfig.api_key = "FDEDsMbK1E2t_PMf7X3M"
	df = quandl.get('NSE/ZEEL', start_date='2017-01-01', end_date='2017-12-31')
	prices = df["Close"]
	dates = df["Date"]

	agent = EMA_Agent(window, up, down)

	test = Backtest(agent, 10000)

	output = test.run(prices)

	# class Evaluation takes for initialization - prices, output, name of algorithm, name of security

	evaluator = Evaluation(prices, dates, output, "EMA", stock)
	return evaluator.complete_evaluation(get_plots, verbose) 
開發者ID:vrishank97,項目名稱:AlgoTrading,代碼行數:18,代碼來源:test_ema.py

示例11: _open_ticker_price_online

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def _open_ticker_price_online(self, ticker):
        """
        Opens the CSV online from yahoo finance, then store in a dictionary.
        """
        if self.end_date is not None:
            ed = self.end_date
        else:
            ed = datetime.today()
        if self.start_date is not None:
            sd = self.start_date
        else:
            sd = ed- timedelta(days = 365)

        data = quandl.get('wiki/'+ticker, start_date=sd, end_date=ed, authtoken='ay68s2CUzKbVuy8GAqxj')
        self.tickers_data[ticker] = data
        self.tickers_data[ticker]["Ticker"] = ticker 
開發者ID:EliteQuant,項目名稱:EliteQuant_Python,代碼行數:18,代碼來源:live_data_feed.py

示例12: _fetch

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def _fetch(self):
        feed = {}

        try:
            for market in self.datasets:
                quote, base = market.split(":")
                if base not in feed:
                    feed[base] = {}

                prices = []
                for dataset in self.datasets[market]:
                    data = quandl.get(dataset, rows=1, returns='numpy')
                feed[base][quote] = {"price": data[0][1],
                                     "volume": 1.0}
        except Exception as e:
            raise Exception("\nError fetching results from {1}! ({0})".format(str(e), type(self).__name__))
        return feed 
開發者ID:xeroc,項目名稱:bitshares-pricefeed,代碼行數:19,代碼來源:quandl.py

示例13: get_data_from_quandl

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def get_data_from_quandl(stocks, save=True):
    """
    Returned dataframe is indexed by Date. So, no need to externally parse dates and change index column.
    :param stocks: Stocks to be downloaded
    :param save: If True, then save the downloaded stock.
    :return: A list of pandas dataframe containing the details of requested stocks.
    """
    quandl.ApiConfig.api_key = QUANDL_KEY
    df_list = []
    for stock in stocks:
        print("DOWNLOADING {0} DATA".format(stock))
        df = quandl.get(stock, start_date=RETRIEVAL_START_DATE, end_date=RETRIEVAL_END_DATE)
        df = df[REL_DATA_COLUMNS]
        df_list.append(df)
        if save:
            df.to_csv('{0}/{1}.csv'.format(DATA_DIR, stock.split('/')[-1]))
    return df_list 
開發者ID:Prakash2403,項目名稱:Chase,代碼行數:19,代碼來源:__init__.py

示例14: is_trading_day

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def is_trading_day(day: datetime.datetime):
    s = redis.StrictRedis(
        host=config.get('REDIS', 'host', fallback='localhost'),
        db=config.getint('REDIS', 'db', fallback=1), decode_responses=True)
    return day, day.strftime('%Y%m%d') in (s.get('TradingDay'), s.get('LastTradingDay'))
    # async with aiohttp.ClientSession() as session:
    #     await max_conn_cffex.acquire()
    #     async with session.get(
    #             'http://{}/fzjy/mrhq/{}/index.xml'.format(cffex_ip, day.strftime('%Y%m/%d')),
    #             allow_redirects=False) as response:
    #         max_conn_cffex.release()
    #         return day, response.status != 302 
開發者ID:BigBrotherTrade,項目名稱:trader,代碼行數:14,代碼來源:__init__.py

示例15: update_from_shfe

# 需要導入模塊: import quandl [as 別名]
# 或者: from quandl import get [as 別名]
def update_from_shfe(day: datetime.datetime):
    try:
        async with aiohttp.ClientSession() as session:
            day_str = day.strftime('%Y%m%d')
            await max_conn_shfe.acquire()
            async with session.get('http://{}/data/dailydata/kx/kx{}.dat'.format(shfe_ip, day_str)) as response:
                rst_json = await response.json()
                max_conn_shfe.release()
                for inst_data in rst_json['o_curinstrument']:
                    """
        {'OPENINTERESTCHG': -11154, 'CLOSEPRICE': 36640, 'SETTLEMENTPRICE': 36770, 'OPENPRICE': 36990,
        'PRESETTLEMENTPRICE': 37080, 'ZD2_CHG': -310, 'DELIVERYMONTH': '1609', 'VOLUME': 51102,
        'PRODUCTSORTNO': 10, 'ZD1_CHG': -440, 'OPENINTEREST': 86824, 'ORDERNO': 0, 'PRODUCTNAME': '銅                  ',
        'LOWESTPRICE': 36630, 'PRODUCTID': 'cu_f    ', 'HIGHESTPRICE': 37000}
                    """
                    # error_data = inst_data
                    if inst_data['DELIVERYMONTH'] == '小計' or inst_data['PRODUCTID'] == '總計':
                        continue
                    if '_' not in inst_data['PRODUCTID']:
                        continue
                    DailyBar.objects.update_or_create(
                        code=inst_data['PRODUCTID'].split('_')[0] + inst_data['DELIVERYMONTH'],
                        exchange=ExchangeType.SHFE, time=day, defaults={
                            'expire_date': inst_data['DELIVERYMONTH'],
                            'open': inst_data['OPENPRICE'] if inst_data['OPENPRICE'] else inst_data['CLOSEPRICE'],
                            'high': inst_data['HIGHESTPRICE'] if inst_data['HIGHESTPRICE'] else
                            inst_data['CLOSEPRICE'],
                            'low': inst_data['LOWESTPRICE'] if inst_data['LOWESTPRICE']
                            else inst_data['CLOSEPRICE'],
                            'close': inst_data['CLOSEPRICE'],
                            'settlement': inst_data['SETTLEMENTPRICE'] if inst_data['SETTLEMENTPRICE'] else
                            inst_data['PRESETTLEMENTPRICE'],
                            'volume': inst_data['VOLUME'] if inst_data['VOLUME'] else 0,
                            'open_interest': inst_data['OPENINTEREST'] if inst_data['OPENINTEREST'] else 0})
    except Exception as e:
        print('update_from_shfe failed: %s' % e) 
開發者ID:BigBrotherTrade,項目名稱:trader,代碼行數:38,代碼來源:__init__.py


注:本文中的quandl.get方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。