本文整理匯總了Python中pywt.wavelist方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.wavelist方法的具體用法?Python pywt.wavelist怎麽用?Python pywt.wavelist使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pywt
的用法示例。
在下文中一共展示了pywt.wavelist方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def __init__(self,
wavelet: str = 'db8') -> None:
"""
Parameters
----------
wavelet : str
Wavelet.
Returns
-------
NoneType
None
"""
# create list of supported wavelets
supported = []
for family in pywt.families():
supported += pywt.wavelist(family)
# check if wavelet is supported
if wavelet not in supported:
raise ValueError(f'DWT supports only {supported} as input wavelet.')
self.m_wavelet = wavelet
示例2: _wavelet_coefs
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def _wavelet_coefs(data, wavelet_name='db4'):
"""Compute Discrete Wavelet Transform coefficients.
Parameters
----------
data : ndarray, shape (n_channels, n_times)
wavelet_name : str (default: db4)
Wavelet name (to be used with ``pywt.Wavelet``). The full list of
Wavelet names are given by: ``[name for family in pywt.families() for
name in pywt.wavelist(family)]``.
Returns
-------
coefs : list of ndarray
Coefficients of a DWT (Discrete Wavelet Transform). ``coefs[0]`` is
the array of approximation coefficient and ``coefs[1:]`` is the list
of detail coefficients.
"""
wavelet = pywt.Wavelet(wavelet_name)
levdec = min(pywt.dwt_max_level(data.shape[-1], wavelet.dec_len), 6)
coefs = pywt.wavedec(data, wavelet=wavelet, level=levdec)
return coefs
示例3: test_wavedecn_coeff_reshape_even
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_wavedecn_coeff_reshape_even():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 28
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
for wave in wavelist:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = params[f]['dec'](x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
示例4: test_perfect_reconstruction
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_perfect_reconstruction():
families = ('db', 'sym', 'coif', 'bior', 'rbio')
wavelets = sum([pywt.wavelist(name) for name in families], [])
# list of mode names in pywt and matlab
modes = [('zero', 'zpd'),
('constant', 'sp0'),
('symmetric', 'sym'),
('periodic', 'ppd'),
('smooth', 'sp1'),
('periodization', 'per')]
dtypes = (np.float32, np.float64)
for wavelet in wavelets:
for pmode, mmode in modes:
for dt in dtypes:
yield check_reconstruction, pmode, mmode, wavelet, dt
示例5: _checkwavelet
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def _checkwavelet(wavelet):
"""Check that wavelet belongs to pywt.wavelist
"""
wavelist = pywt.wavelist(kind='discrete')
if wavelet not in wavelist:
raise ValueError("'%s' not in family set = %s" % (wavelet,
wavelist))
示例6: test_wavelet_coefficients
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_wavelet_coefficients():
families = ('db', 'sym', 'coif', 'bior', 'rbio')
wavelets = sum([pywt.wavelist(name) for name in families], [])
for wavelet in wavelets:
if (pywt.Wavelet(wavelet).orthogonal):
yield check_coefficients_orthogonal, wavelet
elif(pywt.Wavelet(wavelet).biorthogonal):
yield check_coefficients_biorthogonal, wavelet
else:
yield check_coefficients, wavelet
示例7: test_waverec_all_wavelets_modes
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_waverec_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedec(r, wavelet, mode=mode)
assert_allclose(pywt.waverec(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
####
# 2d multilevel dwt function tests
####
示例8: test_waverec2_all_wavelets_modes
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_waverec2_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80, 96)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedec2(r, wavelet, mode=mode)
assert_allclose(pywt.waverec2(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
示例9: test_waverecn_all_wavelets_modes
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_waverecn_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80, 96)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedecn(r, wavelet, mode=mode)
assert_allclose(pywt.waverecn(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
示例10: test_swt2_iswt2_integration
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_swt2_iswt2_integration():
# This function performs a round-trip swt2/iswt2 transform test on
# all available types of wavelets in PyWavelets - except the
# 'dmey' wavelet. The latter has been excluded because it does not
# produce very precise results. This is likely due to the fact
# that the 'dmey' wavelet is a discrete approximation of a
# continuous wavelet. All wavelets are tested up to 3 levels. The
# test validates neither swt2 or iswt2 as such, but it does ensure
# that they are each other's inverse.
max_level = 3
wavelets = pywt.wavelist()
if 'dmey' in wavelets:
# The 'dmey' wavelet seems to be a bit special - disregard it for now
wavelets.remove('dmey')
for current_wavelet_str in wavelets:
current_wavelet = pywt.DiscreteContinuousWavelet(current_wavelet_str)
if isinstance(current_wavelet, pywt.Wavelet):
input_length_power = int(np.ceil(np.log2(max(
current_wavelet.dec_len,
current_wavelet.rec_len))))
input_length = 2**(input_length_power + max_level - 1)
X = np.arange(input_length**2).reshape(input_length, input_length)
with warnings.catch_warnings():
warnings.simplefilter('ignore', FutureWarning)
coeffs = pywt.swt2(X, current_wavelet, max_level)
Y = pywt.iswt2(coeffs, current_wavelet)
assert_allclose(Y, X, rtol=1e-5, atol=1e-5)
示例11: test_compare_downcoef_coeffs
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_compare_downcoef_coeffs():
rstate = np.random.RandomState(1234)
r = rstate.randn(16)
# compare downcoef against wavedec outputs
for nlevels in [1, 2, 3]:
for wavelet in pywt.wavelist():
wavelet = pywt.DiscreteContinuousWavelet(wavelet)
if isinstance(wavelet, pywt.Wavelet):
max_level = pywt.dwt_max_level(r.size, wavelet.dec_len)
if nlevels <= max_level:
a = pywt.downcoef('a', r, wavelet, level=nlevels)
d = pywt.downcoef('d', r, wavelet, level=nlevels)
coeffs = pywt.wavedec(r, wavelet, level=nlevels)
assert_allclose(a, coeffs[0])
assert_allclose(d, coeffs[1])
示例12: test_wavelist
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_wavelist():
for name in pywt.wavelist(family='coif'):
assert_(name.startswith('coif'))
assert_('cgau7' in pywt.wavelist(kind='continuous'))
assert_('sym20' in pywt.wavelist(kind='discrete'))
assert_(len(pywt.wavelist(kind='continuous')) +
len(pywt.wavelist(kind='discrete')) ==
len(pywt.wavelist(kind='all')))
assert_raises(ValueError, pywt.wavelist, kind='foobar')
示例13: test_dwdtn_idwtn_allwavelets
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def test_dwdtn_idwtn_allwavelets():
rstate = np.random.RandomState(1234)
r = rstate.randn(16, 16)
# test 2D case only for all wavelet types
wavelist = pywt.wavelist()
if 'dmey' in wavelist:
wavelist.remove('dmey')
for wavelet in wavelist:
if isinstance(pywt.DiscreteContinuousWavelet(wavelet), pywt.Wavelet):
for mode in pywt.Modes.modes:
coeffs = pywt.dwtn(r, wavelet, mode=mode)
assert_allclose(pywt.idwtn(coeffs, wavelet, mode=mode),
r, rtol=1e-7, atol=1e-7)
示例14: available_first_stage_filters
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def available_first_stage_filters():
"""
Iterable of available wavelet filters compatible with the
first stage of dual-tree complex wavelent transform.
Returns
-------
wavelets : iterable
List of sorted string names. The wavelet numerical values can be
retrieved from the :func:`dt_first_stage` function.
"""
return sorted(filter(lambda name: name != "dmey", wavelist(kind="discrete")))
# For backwards compatibility with iris
示例15: get_wavlist
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavelist [as 別名]
def get_wavlist():
"""Returns the list of continuous wavelet functions available in the
PyWavelets library.
"""
l = []
for name in pywt.wavelist(kind='continuous'):
# supress warnings when the wavelet name is missing parameters
completion = {
'cmor': 'cmor1.5-1.0',
'fbsp': 'fbsp1-1.5-1.0',
'shan': 'shan1.5-1.0' }
if name in completion:
name = completion[name]# supress warning
l.append( name+" :\t"+pywt.ContinuousWavelet(name).family_name )
return l