本文整理匯總了Python中pywt.wavedec2方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.wavedec2方法的具體用法?Python pywt.wavedec2怎麽用?Python pywt.wavedec2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pywt
的用法示例。
在下文中一共展示了pywt.wavedec2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate_basis
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def generate_basis():
"""generate the basis"""
x = np.zeros((64, 64))
coefs = pywt.wavedec2(x, 'db1')
n_levels = len(coefs)
basis = []
for i in range(n_levels):
coefs[i] = list(coefs[i])
n_filters = len(coefs[i])
for j in range(n_filters):
for m in range(coefs[i][j].shape[0]):
try:
for n in range(coefs[i][j].shape[1]):
coefs[i][j][m][n] = 1
temp_basis = pywt.waverec2(coefs, 'db1')
basis.append(temp_basis)
coefs[i][j][m][n] = 0
except IndexError:
coefs[i][j][m] = 1
temp_basis = pywt.waverec2(coefs, 'db1')
basis.append(temp_basis)
coefs[i][j][m] = 0
basis = np.array(basis)
return basis
示例2: compute_wavelet_feature_vector
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def compute_wavelet_feature_vector(image, wavelet='db6'):
image_np = np.array(image)
rgb = [image_np[:, :, i] for i in (0, 1, 2)]
if isinstance(wavelet, basestring):
wavelet = pywt.Wavelet(wavelet)
feature_vector = []
for c in rgb:
level = pywt.dwt_max_level(min(c.shape[0], c.shape[1]), wavelet.dec_len)
levels = pywt.wavedec2(c, wavelet, mode='sym', level=level)
for coeffs in levels:
if not isinstance(coeffs, tuple):
coeffs = (coeffs,)
for w in coeffs:
w_flat = w.flatten()
feature_vector += [float(np.mean(w_flat)), float(np.std(w_flat))]
return feature_vector
示例3: test_coeffs_to_array
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def test_coeffs_to_array():
# single element list returns the first element
a_coeffs = [np.arange(8).reshape(2, 4), ]
arr, arr_slices = pywt.coeffs_to_array(a_coeffs)
assert_allclose(arr, a_coeffs[0])
assert_allclose(arr, arr[arr_slices[0]])
assert_raises(ValueError, pywt.coeffs_to_array, [])
# invalid second element: array as in wavedec, but not 1D
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0], ] * 2)
# invalid second element: tuple as in wavedec2, but not a 3-tuple
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0],
(a_coeffs[0], )])
# coefficients as None is not supported
assert_raises(ValueError, pywt.coeffs_to_array, [None, ])
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs,
(None, None, None)])
# invalid type for second coefficient list element
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs, None])
# use an invalid key name in the coef dictionary
coeffs = [np.array([0]), dict(d=np.array([0]), c=np.array([0]))]
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
示例4: test_wavedecn_coeff_reshape_even
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def test_wavedecn_coeff_reshape_even():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 28
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
for wave in wavelist:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = params[f]['dec'](x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
示例5: _assert_all_coeffs_equal
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def _assert_all_coeffs_equal(coefs1, coefs2):
# return True only if all coefficients of SWT or DWT match over all levels
if len(coefs1) != len(coefs2):
return False
for (c1, c2) in zip(coefs1, coefs2):
if isinstance(c1, tuple):
# for swt, swt2, dwt, dwt2, wavedec, wavedec2
for a1, a2 in zip(c1, c2):
assert_array_equal(a1, a2)
elif isinstance(c1, dict):
# for swtn, dwtn, wavedecn
for k, v in c1.items():
assert_array_equal(v, c2[k])
else:
return False
return True
示例6: fusion
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def fusion(self):
self._load_images()
coeffss = []
for image in self._images:
coeffss.append(pywt.wavedec2(image, 'db1', level=self._zt))
# low pass
if self._mp == 0:
cAF = coeffss[0][0]
for coeffs in coeffss[1:]:
cAF += coeffs[0]
cAF = cAF/len(coeffs)
# high pass
if self._ap == 2:
hipassF = coeffss[0][1:]
for coeffs in coeffss[1:]: # every image
for idxLevel, HVDs in enumerate(coeffs[1:]): # every level
for idxDirec, HVD in enumerate(HVDs):
maxMap = hipassF[idxLevel][idxDirec] < HVD
hipassF[idxLevel][idxDirec][maxMap] = HVD[maxMap]
coeffsFusion = [cAF,] + hipassF
self._fusionImage = pywt.waverec2(coeffsFusion, 'db1')
return self._fusionImage
示例7: generate_basis
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def generate_basis():
"""generate the basis"""
x = np.zeros((56, 56))
coefs = pywt.wavedec2(x, 'db1')
n_levels = len(coefs)
basis = []
for i in range(n_levels):
coefs[i] = list(coefs[i])
n_filters = len(coefs[i])
for j in range(n_filters):
for m in range(coefs[i][j].shape[0]):
try:
for n in range(coefs[i][j].shape[1]):
coefs[i][j][m][n] = 1
temp_basis = pywt.waverec2(coefs, 'db1')
basis.append(temp_basis)
coefs[i][j][m][n] = 0
except IndexError:
coefs[i][j][m] = 1
temp_basis = pywt.waverec2(coefs, 'db1')
basis.append(temp_basis)
coefs[i][j][m] = 0
basis = np.array(basis)
return basis
示例8: __init__
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def __init__(self,nrow=256,ncol=256,wavelet='db4',level=3,fwd_mode='recon',\
dtype=np.float64,name=None):
# Save parameters
self.wavelet = wavelet
self.level = level
shape0 = (nrow,ncol)
shape1 = (nrow,ncol)
dtype0 = dtype
dtype1 = dtype
if pywt.Wavelet(wavelet).orthogonal:
svd_avail = True #SVD calculation assumes an orthogonal wavelet
else:
svd_avail = False
BaseLinTrans.__init__(self, shape0, shape1, dtype0, dtype1,\
svd_avail=svd_avail,name=name)
# Set the mode to periodic to make the wavelet orthogonal
self.mode = 'periodization'
# Send a zero image to get the coefficient slices
im = np.zeros((nrow,ncol))
coeffs = pywt.wavedec2(im, wavelet=self.wavelet, level=self.level, \
mode=self.mode)
_, self.coeff_slices = pywt.coeffs_to_array(coeffs)
# Confirm that fwd_mode is valid
if (fwd_mode != 'recon') and (fwd_mode != 'analysis'):
raise common.VpException('fwd_mode must be recon or analysis')
self.fwd_mode = fwd_mode
示例9: analysis
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def analysis(self,z0):
"""
Analysis: image -> coefficients
"""
coeffs = pywt.wavedec2(z0, wavelet=self.wavelet, level=self.level, \
mode=self.mode)
z1, _ = pywt.coeffs_to_array(coeffs)
return z1
示例10: recon
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def recon(self,z1):
"""
Wavelet reconstruction: coefficients -> image
"""
coeffs = pywt.array_to_coeffs(z1, self.coeff_slices, \
output_format='wavedec2')
z0 = pywt.waverec2(coeffs, wavelet=self.wavelet, mode=self.mode)
return z0
示例11: get_wavelet
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def get_wavelet(x):
coefs_list = []
for i in range(3):
coefs_list.append(pywt.wavedec2(x[:, :, i], 'db1'))
return coefs_list
示例12: wavelet_transform
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def wavelet_transform(x):
w_coeffs_rgb = [] # np.zeros(x.shape[3], np.prod(x.shape))
for i in range(x.shape[3]):
w_coeffs_list = pywt.wavedec2(x[0,:,:,i], 'db4', level=None, mode='periodization')
w_coeffs, coeff_slices = pywt.coeffs_to_array(w_coeffs_list)
w_coeffs_rgb.append(w_coeffs)
w_coeffs_rgb = np.array(w_coeffs_rgb)
return w_coeffs_rgb, coeff_slices
示例13: test_waverec2_accuracies
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def test_waverec2_accuracies():
rstate = np.random.RandomState(1234)
x0 = rstate.randn(4, 4)
for dt, tol in dtypes_and_tolerances:
x = x0.astype(dt)
if np.iscomplexobj(x):
x += 1j*rstate.randn(4, 4).astype(x.real.dtype)
coeffs = pywt.wavedec2(x, 'db1')
assert_(len(coeffs) == 3)
assert_allclose(pywt.waverec2(coeffs, 'db1'), x, atol=tol, rtol=tol)
示例14: test_multilevel_dtypes_2d
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def test_multilevel_dtypes_2d():
wavelet = pywt.Wavelet('haar')
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
# wavedec2, waverec2
x = np.ones((8, 8), dtype=dt_in)
errmsg = "wrong dtype returned for {0} input".format(dt_in)
cA, coeffsD2, coeffsD1 = pywt.wavedec2(x, wavelet, level=2)
assert_(cA.dtype == dt_out, "wavedec2: " + errmsg)
for c in coeffsD1:
assert_(c.dtype == dt_out, "wavedec2: " + errmsg)
for c in coeffsD2:
assert_(c.dtype == dt_out, "wavedec2: " + errmsg)
x_roundtrip = pywt.waverec2([cA, coeffsD2, coeffsD1], wavelet)
assert_(x_roundtrip.dtype == dt_out, "waverec2: " + errmsg)
示例15: test_waverec2_all_wavelets_modes
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec2 [as 別名]
def test_waverec2_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80, 96)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedec2(r, wavelet, mode=mode)
assert_allclose(pywt.waverec2(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)