本文整理匯總了Python中pywt.wavedec方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.wavedec方法的具體用法?Python pywt.wavedec怎麽用?Python pywt.wavedec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pywt
的用法示例。
在下文中一共展示了pywt.wavedec方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _assert_all_coeffs_equal
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def _assert_all_coeffs_equal(coefs1, coefs2):
# return True only if all coefficients of SWT or DWT match over all levels
if len(coefs1) != len(coefs2):
return False
for (c1, c2) in zip(coefs1, coefs2):
if isinstance(c1, tuple):
# for swt, swt2, dwt, dwt2, wavedec, wavedec2
for a1, a2 in zip(c1, c2):
assert_array_equal(a1, a2)
elif isinstance(c1, dict):
# for swtn, dwtn, wavedecn
for k, v in c1.items():
assert_array_equal(v, c2[k])
else:
return False
return True
示例2: _wavelet_coefs
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def _wavelet_coefs(data, wavelet_name='db4'):
"""Compute Discrete Wavelet Transform coefficients.
Parameters
----------
data : ndarray, shape (n_channels, n_times)
wavelet_name : str (default: db4)
Wavelet name (to be used with ``pywt.Wavelet``). The full list of
Wavelet names are given by: ``[name for family in pywt.families() for
name in pywt.wavelist(family)]``.
Returns
-------
coefs : list of ndarray
Coefficients of a DWT (Discrete Wavelet Transform). ``coefs[0]`` is
the array of approximation coefficient and ``coefs[1:]`` is the list
of detail coefficients.
"""
wavelet = pywt.Wavelet(wavelet_name)
levdec = min(pywt.dwt_max_level(data.shape[-1], wavelet.dec_len), 6)
coefs = pywt.wavedec(data, wavelet=wavelet, level=levdec)
return coefs
示例3: denoise
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def denoise(X,wave0):
wavelet=wave0
if len(X)>=8:
level0= 1
if np.floor(np.log(len(X)))>7:
level0= np.floor(np.log(len(X))/2.0)
thres = 2*np.sqrt(2*np.log(len(X))/len(X))*np.std(X)
thres = 0.0
WaveletCoeffs = pywt.wavedec(X, wavelet, level=level0)
NewWaveletCoeffs = map (lambda x: pywt.threshold(x, thres, mode='hard'),WaveletCoeffs)
newWave2 = pywt.waverec( NewWaveletCoeffs, wavelet)
return newWave2
else:
logging.warning( "the series is too short")
return X
#compute the liquidity index
示例4: test_coeffs_to_array
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_coeffs_to_array():
# single element list returns the first element
a_coeffs = [np.arange(8).reshape(2, 4), ]
arr, arr_slices = pywt.coeffs_to_array(a_coeffs)
assert_allclose(arr, a_coeffs[0])
assert_allclose(arr, arr[arr_slices[0]])
assert_raises(ValueError, pywt.coeffs_to_array, [])
# invalid second element: array as in wavedec, but not 1D
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0], ] * 2)
# invalid second element: tuple as in wavedec2, but not a 3-tuple
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0],
(a_coeffs[0], )])
# coefficients as None is not supported
assert_raises(ValueError, pywt.coeffs_to_array, [None, ])
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs,
(None, None, None)])
# invalid type for second coefficient list element
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs, None])
# use an invalid key name in the coef dictionary
coeffs = [np.array([0]), dict(d=np.array([0]), c=np.array([0]))]
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
示例5: test_wavedecn_coeff_reshape_even
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_wavedecn_coeff_reshape_even():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 28
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
for wave in wavelist:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = params[f]['dec'](x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
示例6: apply
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def apply(self, data):
# data[ch][dim0]
shape = data.shape
out = np.empty((shape[0], 4 * (self.n * 2 + 1)), dtype=np.float64)
def set_stats(outi, x, offset):
outi[offset*4] = np.mean(x)
outi[offset*4+1] = np.std(x)
outi[offset*4+2] = np.min(x)
outi[offset*4+3] = np.max(x)
for i in range(len(data)):
outi = out[i]
new_data = pywt.wavedec(data[i], 'db%d' % self.n, level=self.n*2)
for i, x in enumerate(new_data):
set_stats(outi, x, i)
return out
示例7: compute_wavelet_descriptor
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def compute_wavelet_descriptor(beat, family, level):
wave_family = pywt.Wavelet(family)
coeffs = pywt.wavedec(beat, wave_family, level=level)
return coeffs[0]
# Compute my descriptor based on amplitudes of several intervals
示例8: denoise
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def denoise(X,wave0):
wavelet=wave0
if len(X)>=8:
level0= 1
if np.floor(np.log(len(X)))>7:
level0= np.floor(np.log(len(X))/2.0)
thres = 2*np.sqrt(2*np.log(len(X))/len(X))*np.std(X)
thres = 0.0
WaveletCoeffs = pywt.wavedec(X, wavelet, level=level0)
NewWaveletCoeffs = map (lambda x: pywt.threshold(x, thres, mode='hard'),WaveletCoeffs)
newWave2 = pywt.waverec( NewWaveletCoeffs, wavelet)
return newWave2
else:
logging.warning("the series is too short!")
return X
示例9: test_wavedec
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_wavedec():
x = [3, 7, 1, 1, -2, 5, 4, 6]
db1 = pywt.Wavelet('db1')
cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
assert_almost_equal(cA3, [8.83883476])
assert_almost_equal(cD3, [-0.35355339])
assert_allclose(cD2, [4., -3.5])
assert_allclose(cD1, [-2.82842712, 0, -4.94974747, -1.41421356])
assert_(pywt.dwt_max_level(len(x), db1) == 3)
示例10: test_waverec_accuracies
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_waverec_accuracies():
rstate = np.random.RandomState(1234)
x0 = rstate.randn(8)
for dt, tol in dtypes_and_tolerances:
x = x0.astype(dt)
if np.iscomplexobj(x):
x += 1j*rstate.randn(8).astype(x.real.dtype)
coeffs = pywt.wavedec(x, 'db1')
assert_allclose(pywt.waverec(coeffs, 'db1'), x, atol=tol, rtol=tol)
示例11: test_waverec_none
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_waverec_none():
x = [3, 7, 1, 1, -2, 5, 4, 6]
coeffs = pywt.wavedec(x, 'db1')
# set some coefficients to None
coeffs[2] = None
coeffs[0] = None
assert_(pywt.waverec(coeffs, 'db1').size, len(x))
示例12: test_waverec_odd_length
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_waverec_odd_length():
x = [3, 7, 1, 1, -2, 5]
coeffs = pywt.wavedec(x, 'db1')
assert_allclose(pywt.waverec(coeffs, 'db1'), x, rtol=1e-12)
示例13: test_waverec_complex
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_waverec_complex():
x = np.array([3, 7, 1, 1, -2, 5, 4, 6])
x = x + 1j
coeffs = pywt.wavedec(x, 'db1')
assert_allclose(pywt.waverec(coeffs, 'db1'), x, rtol=1e-12)
示例14: test_waverec_all_wavelets_modes
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_waverec_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedec(r, wavelet, mode=mode)
assert_allclose(pywt.waverec(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
####
# 2d multilevel dwt function tests
####
示例15: test_wavedecn_coeff_reshape_axes_subset
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import wavedec [as 別名]
def test_wavedecn_coeff_reshape_axes_subset():
# verify round trip is correct when only a subset of axes are transformed:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
mode = 'symmetric'
w = pywt.Wavelet('db2')
N = 16
ndim = 3
for axes in [(-1, ), (0, ), (1, ), (0, 1), (1, 2), (0, 2), None]:
x1 = rng.randn(*([N] * ndim))
coeffs = pywt.wavedecn(x1, w, mode=mode, axes=axes)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, axes=axes)
if axes is not None:
# if axes is not None, it must be provided to coeffs_to_array
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
# mismatched axes size
assert_raises(ValueError, pywt.coeffs_to_array, coeffs,
axes=(0, 1, 2, 3))
assert_raises(ValueError, pywt.coeffs_to_array, coeffs,
axes=())
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
x1r = pywt.waverecn(coeffs2, w, mode=mode, axes=axes)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)