當前位置: 首頁>>代碼示例>>Python>>正文


Python pywt.dwt_max_level方法代碼示例

本文整理匯總了Python中pywt.dwt_max_level方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.dwt_max_level方法的具體用法?Python pywt.dwt_max_level怎麽用?Python pywt.dwt_max_level使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pywt的用法示例。


在下文中一共展示了pywt.dwt_max_level方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _wavelet_coefs

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def _wavelet_coefs(data, wavelet_name='db4'):
    """Compute Discrete Wavelet Transform coefficients.

    Parameters
    ----------
    data : ndarray, shape (n_channels, n_times)

    wavelet_name : str (default: db4)
         Wavelet name (to be used with ``pywt.Wavelet``). The full list of
         Wavelet names are given by: ``[name for family in pywt.families() for
         name in pywt.wavelist(family)]``.

    Returns
    -------
    coefs : list of ndarray
         Coefficients of a DWT (Discrete Wavelet Transform). ``coefs[0]`` is
         the array of approximation coefficient and ``coefs[1:]`` is the list
         of detail coefficients.
    """
    wavelet = pywt.Wavelet(wavelet_name)
    levdec = min(pywt.dwt_max_level(data.shape[-1], wavelet.dec_len), 6)
    coefs = pywt.wavedec(data, wavelet=wavelet, level=levdec)
    return coefs 
開發者ID:mne-tools,項目名稱:mne-features,代碼行數:25,代碼來源:utils.py

示例2: compute_wavelet_feature_vector

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def compute_wavelet_feature_vector(image, wavelet='db6'):
    image_np = np.array(image)
    rgb = [image_np[:, :, i] for i in (0, 1, 2)]

    if isinstance(wavelet, basestring):
        wavelet = pywt.Wavelet(wavelet)

    feature_vector = []
    for c in rgb:
        level = pywt.dwt_max_level(min(c.shape[0], c.shape[1]), wavelet.dec_len)
        levels = pywt.wavedec2(c, wavelet, mode='sym', level=level)
        for coeffs in levels:
            if not isinstance(coeffs, tuple):
                coeffs = (coeffs,)
            for w in coeffs:
                w_flat = w.flatten()
                feature_vector += [float(np.mean(w_flat)), float(np.std(w_flat))]

    return feature_vector 
開發者ID:seanbell,項目名稱:opensurfaces,代碼行數:21,代碼來源:wavelets.py

示例3: test_wavedecn_coeff_reshape_even

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def test_wavedecn_coeff_reshape_even():
    # verify round trip is correct:
    #   wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
    # This is done for wavedec{1, 2, n}
    rng = np.random.RandomState(1234)
    params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
              'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
              'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
    N = 28
    for f in params:
        x1 = rng.randn(*([N] * params[f]['d']))
        for mode in pywt.Modes.modes:
            for wave in wavelist:
                w = pywt.Wavelet(wave)
                maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
                if maxlevel == 0:
                    continue

                coeffs = params[f]['dec'](x1, w, mode=mode)
                coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
                coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
                                               output_format=f)
                x1r = params[f]['rec'](coeffs2, w, mode=mode)

                assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:27,代碼來源:test_multilevel.py

示例4: test_waverecn_coeff_reshape_odd

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def test_waverecn_coeff_reshape_odd():
    # verify round trip is correct:
    #   wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
    rng = np.random.RandomState(1234)
    x1 = rng.randn(35, 33)
    for mode in pywt.Modes.modes:
        for wave in ['haar', ]:
            w = pywt.Wavelet(wave)
            maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
            if maxlevel == 0:
                continue
            coeffs = pywt.wavedecn(x1, w, mode=mode)
            coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
            coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
            x1r = pywt.waverecn(coeffs2, w, mode=mode)
            # truncate reconstructed values to original shape
            x1r = x1r[[slice(s) for s in x1.shape]]
            assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:20,代碼來源:test_multilevel.py

示例5: test_wavedec

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def test_wavedec():
    x = [3, 7, 1, 1, -2, 5, 4, 6]
    db1 = pywt.Wavelet('db1')
    cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
    assert_almost_equal(cA3, [8.83883476])
    assert_almost_equal(cD3, [-0.35355339])
    assert_allclose(cD2, [4., -3.5])
    assert_allclose(cD1, [-2.82842712, 0, -4.94974747, -1.41421356])
    assert_(pywt.dwt_max_level(len(x), db1) == 3) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:11,代碼來源:test_multilevel.py

示例6: test_compare_downcoef_coeffs

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def test_compare_downcoef_coeffs():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(16)
    # compare downcoef against wavedec outputs
    for nlevels in [1, 2, 3]:
        for wavelet in pywt.wavelist():
            wavelet = pywt.DiscreteContinuousWavelet(wavelet)
            if isinstance(wavelet, pywt.Wavelet):
                max_level = pywt.dwt_max_level(r.size, wavelet.dec_len)
                if nlevels <= max_level:
                    a = pywt.downcoef('a', r, wavelet, level=nlevels)
                    d = pywt.downcoef('d', r, wavelet, level=nlevels)
                    coeffs = pywt.wavedec(r, wavelet, level=nlevels)
                    assert_allclose(a, coeffs[0])
                    assert_allclose(d, coeffs[1]) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:17,代碼來源:test__pywt.py

示例7: test_dwt_max_level

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def test_dwt_max_level():
    assert_(pywt.dwt_max_level(16, 2) == 4)
    assert_(pywt.dwt_max_level(16, 8) == 1)
    assert_(pywt.dwt_max_level(16, 9) == 1)
    assert_(pywt.dwt_max_level(16, 10) == 0)
    assert_(pywt.dwt_max_level(16, 18) == 0) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:8,代碼來源:test__pywt.py

示例8: dt_max_level

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def dt_max_level(data, first_stage, wavelet, axis=-1):
    """
    Returns the maximum decomposition level possible from the dual-tree complex wavelet transform.

    Parameters
    ----------
    data : ndarray
        Input data. Can be of any dimension.
    first_stage : str
        Wavelet to use for the first stage. See :func:`skued.available_first_stage_filters` for a list of suitable arguments
    wavelet : str
        Wavelet to use in stages > 1. Must be appropriate for the dual-tree complex wavelet transform.
        See :func:`skued.available_dt_filters` for possible values.
    axis : int, optional
        Axis over which to compute the transform. Default is -1
        
    Returns
    -------
    max_level : int
        Maximum decomposition level.
    """
    real_wavelet, imag_wavelet = dualtree_wavelet(wavelet)
    return dwt_max_level(
        data_len=data.shape[axis],
        filter_len=max([real_wavelet.dec_len, imag_wavelet.dec_len]),
    ) 
開發者ID:LaurentRDC,項目名稱:scikit-ued,代碼行數:28,代碼來源:dtcwt.py

示例9: fwt

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def fwt(input, wave_name='db4', axes=None, level=None, apply_zpad=True):
    """Forward wavelet transform.

    Args:
        input (array): Input array.
        wave_name (str): Wavelet name.
        axes (None or tuple of int): Axes to perform wavelet transform.
        level (None or int): Number of wavelet levels.
        apply_zpad (bool): If true, zero-pad for linear convolution.
    """
    device = backend.get_device(input)
    xp = device.xp

    if axes is None:
        axes = tuple([k for k in range(len(input.shape))
                      if input.shape[k] > 1])

    if (type(axes) == int):
        axes = (axes,)

    wavdct = pywt.Wavelet(wave_name)
    dec_lo = xp.array(wavdct.dec_lo)
    dec_hi = xp.array(wavdct.dec_hi)

    if level is None:
        level = pywt.dwt_max_level(
                    xp.min(xp.array([input.shape[ax] for ax in axes])),
                    dec_lo.size)

    if level <= 0:
        return input

    assert level > 0

    y = apply_dec_along_axis(input, axes, dec_lo, dec_hi, level, apply_zpad)
    approx_idx = tuple([slice(0, y.shape[k]//2)
                        if k in axes else slice(0, None)
                        for k in range(len(input.shape))])
    y[approx_idx] = fwt(y[approx_idx], wave_name=wave_name,
                        axes=axes, level=level-1, apply_zpad=False)

    return y 
開發者ID:mikgroup,項目名稱:sigpy,代碼行數:44,代碼來源:wavelet.py

示例10: iwt

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt_max_level [as 別名]
def iwt(input, oshape, wave_name='db4', axes=None, level=None, inplace=False):
    """Inverse wavelet transform.

    Args:
        input (array): Input array.
        oshape (tuple): Output shape.
        wave_name (str): Wavelet name.
        axes (None or tuple of int): Axes to perform wavelet transform.
        level (None or int): Number of wavelet levels.
        inplace (bool): Modify input array in place.
    """
    device = backend.get_device(input)
    xp = device.xp

    if axes is None:
        axes = tuple([k for k in range(len(input.shape))
                      if input.shape[k] > 1])

    if (type(axes) == int):
        axes = (axes,)

    wavdct = pywt.Wavelet(wave_name)
    rec_lo = xp.array(wavdct.rec_lo)
    rec_hi = xp.array(wavdct.rec_hi)

    if level is None:
        level = pywt.dwt_max_level(
                    xp.min(xp.array([input.shape[ax] for ax in axes])),
                    rec_lo.size)

    if level <= 0:
        return input

    assert level > 0
    for ax in axes:
        assert input.shape[ax] % 2 == 0

    x = input if inplace else input.astype(xp.complex64).copy()

    approx_idx = tuple([slice(0, input.shape[k]//2)
                        if k in axes else slice(0, None)
                        for k in range(len(input.shape))])
    x[approx_idx] = iwt(x[approx_idx], input[approx_idx].shape,
                        wave_name=wave_name, axes=axes, level=level-1,
                        inplace=True)

    y = apply_rec_along_axis(x, axes, rec_lo, rec_hi)
    crop_idx = tuple([slice(0, oshape[k])
                      if k in axes else slice(0, None)
                      for k in range(len(input.shape))])

    return y[crop_idx] 
開發者ID:mikgroup,項目名稱:sigpy,代碼行數:54,代碼來源:wavelet.py


注:本文中的pywt.dwt_max_level方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。