當前位置: 首頁>>代碼示例>>Python>>正文


Python pywt.dwt方法代碼示例

本文整理匯總了Python中pywt.dwt方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.dwt方法的具體用法?Python pywt.dwt怎麽用?Python pywt.dwt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pywt的用法示例。


在下文中一共展示了pywt.dwt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _assert_all_coeffs_equal

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def _assert_all_coeffs_equal(coefs1, coefs2):
    # return True only if all coefficients of SWT or DWT match over all levels
    if len(coefs1) != len(coefs2):
        return False
    for (c1, c2) in zip(coefs1, coefs2):
        if isinstance(c1, tuple):
            # for swt, swt2, dwt, dwt2, wavedec, wavedec2
            for a1, a2 in zip(c1, c2):
                assert_array_equal(a1, a2)
        elif isinstance(c1, dict):
            # for swtn, dwtn, wavedecn
            for k, v in c1.items():
                assert_array_equal(v, c2[k])
        else:
            return False
    return True 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:test_concurrent.py

示例2: test_dwt_idwt_basic

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_idwt_basic():
    x = [3, 7, 1, 1, -2, 5, 4, 6]
    cA, cD = pywt.dwt(x, 'db2')
    cA_expect = [5.65685425, 7.39923721, 0.22414387, 3.33677403, 7.77817459]
    cD_expect = [-2.44948974, -1.60368225, -4.44140056, -0.41361256,
                 1.22474487]
    assert_allclose(cA, cA_expect)
    assert_allclose(cD, cD_expect)

    x_roundtrip = pywt.idwt(cA, cD, 'db2')
    assert_allclose(x_roundtrip, x, rtol=1e-10)

    # mismatched dtypes OK
    x_roundtrip2 = pywt.idwt(cA.astype(np.float64), cD.astype(np.float32),
                             'db2')
    assert_allclose(x_roundtrip2, x, rtol=1e-7, atol=1e-7)
    assert_(x_roundtrip.dtype == np.float64) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:19,代碼來源:test_dwt_idwt.py

示例3: test_dwt_idwt_partial_complex

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_idwt_partial_complex():
    x = np.asarray([3, 7, 1, 1, -2, 5, 4, 6])
    x = x + 0.5j*x

    cA, cD = pywt.dwt(x, 'haar')
    cA_rec_expect = np.array([5.0+2.5j, 5.0+2.5j, 1.0+0.5j, 1.0+0.5j,
                              1.5+0.75j, 1.5+0.75j, 5.0+2.5j, 5.0+2.5j])
    cA_rec = pywt.idwt(cA, None, 'haar')
    assert_allclose(cA_rec, cA_rec_expect)

    cD_rec_expect = np.array([-2.0-1.0j, 2.0+1.0j, 0.0+0.0j, 0.0+0.0j,
                              -3.5-1.75j, 3.5+1.75j, -1.0-0.5j, 1.0+0.5j])
    cD_rec = pywt.idwt(None, cD, 'haar')
    assert_allclose(cD_rec, cD_rec_expect)

    assert_allclose(cA_rec + cD_rec, x) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:test_dwt_idwt.py

示例4: test_dwt_short_input_allmodes

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_short_input_allmodes():
    # some test cases where the input is shorter than the DWT filter
    x = [1, 2, 3]
    wavelet = 'db2'
    # manually pad each end by the filter size (4 for 'db2' used here)
    padded_x = {'zero': [0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0],
                'constant': [1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3],
                'symmetric': [3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1],
                'reflect': [1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3],
                'periodic': [3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1],
                'smooth': [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7],
                }
    for mode, xpad in padded_x.items():
        # DWT of the manually padded array.  will discard edges later so
        # symmetric mode used here doesn't matter.
        cApad, cDpad = pywt.dwt(xpad, wavelet, mode='symmetric')

        # central region of the padded output (unaffected by mode  )
        expected_result = (cApad[2:-2], cDpad[2:-2])

        cA, cD = pywt.dwt(x, wavelet, mode)
        assert_allclose(cA, expected_result[0], rtol=1e-7, atol=1e-8)
        assert_allclose(cD, expected_result[1], rtol=1e-7, atol=1e-8) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:25,代碼來源:test_modes.py

示例5: plot_signal_decomp

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def plot_signal_decomp(data, w, title):
    """Decompose and plot a signal S.
    S = An + Dn + Dn-1 + ... + D1
    """
    w = pywt.Wavelet(w)
    a = data
    ca = []
    cd = []
    for i in range(5):
        (a, d) = pywt.dwt(a, w, mode)
        ca.append(a)
        cd.append(d)

    rec_a = []
    rec_d = []

    for i, coeff in enumerate(ca):
        coeff_list = [coeff, None] + [None] * i
        rec_a.append(pywt.waverec(coeff_list, w))

    for i, coeff in enumerate(cd):
        coeff_list = [None, coeff] + [None] * i
        rec_d.append(pywt.waverec(coeff_list, w))

    fig = plt.figure()
    ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
    ax_main.set_title(title)
    ax_main.plot(data)
    ax_main.set_xlim(0, len(data) - 1)

    for i, y in enumerate(rec_a):
        ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
        ax.plot(y, 'r')
        ax.set_xlim(0, len(y) - 1)
        ax.set_ylabel("A%d" % (i + 1))

    for i, y in enumerate(rec_d):
        ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
        ax.plot(y, 'g')
        ax.set_xlim(0, len(y) - 1)
        ax.set_ylabel("D%d" % (i + 1)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:43,代碼來源:study_wave.py

示例6: test_mode_equivalence

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_mode_equivalence():
    old_new = [('zpd', 'zero'),
               ('cpd', 'constant'),
               ('sym', 'symmetric'),
               ('ppd', 'periodic'),
               ('sp1', 'smooth'),
               ('per', 'periodization')]
    x = np.arange(8.)
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', DeprecationWarning)
        for old, new in old_new:
            assert_array_equal(pywt.dwt(x, 'db2', mode=old),
                               pywt.dwt(x, 'db2', mode=new)) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:15,代碼來源:test_deprecations.py

示例7: check_reconstruction

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def check_reconstruction(pmode, mmode, wavelet, dtype):
    data_size = list(range(2, 40)) + [100, 200, 500, 1000, 2000, 10000,
                                      50000, 100000]
    np.random.seed(12345)
    # TODO: smoke testing - more failures for different seeds

    if dtype == np.float32:
        # was 3e-7 has to be lowered as db21, db29, db33, db35, coif14, coif16 were failing
        epsilon = 6e-7
    else:
        epsilon = 5e-11

    for N in data_size:
        data = np.asarray(np.random.random(N), dtype)

        # compute dwt coefficients
        pa, pd = pywt.dwt(data, wavelet, pmode)

        # compute reconstruction
        rec = pywt.idwt(pa, pd, wavelet, pmode)

        if len(data) % 2:
            rec = rec[:len(data)]

        rms_rec = np.sqrt(np.mean((data-rec)**2))
        msg = ('[RMS_REC > EPSILON] for Mode: %s, Wavelet: %s, '
               'Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_rec))
        assert_(rms_rec < epsilon, msg=msg) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:30,代碼來源:test_perfect_reconstruction.py

示例8: test_concurrent_dwt

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_concurrent_dwt():
    # dwt on 1D data calls the Cython dwt_single
    # other cases call dwt_axis
    for dwt_func, x in zip([pywt.dwt, pywt.dwt2, pywt.dwtn],
                           [np.ones(8), np.eye(16), np.eye(16)]):
        transform = partial(dwt_func, wavelet='haar')
        for _ in range(10):
            arrs = [x.copy() for _ in range(100)]
            with futures.ThreadPoolExecutor(max_workers=max_workers) as ex:
                results = list(ex.map(transform, arrs))

        # validate result from  one of the concurrent runs
        expected_result = transform(x)
        _assert_all_coeffs_equal([expected_result, ], [results[-1], ]) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:16,代碼來源:test_concurrent.py

示例9: _check_accuracy

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def _check_accuracy(data, w, pmode, ma, md, wavelet, epsilon):
    # PyWavelets result
    pa, pd = pywt.dwt(data, w, pmode)

    # calculate error measures
    rms_a = np.sqrt(np.mean((pa - ma) ** 2))
    rms_d = np.sqrt(np.mean((pd - md) ** 2))

    msg = ('[RMS_A > EPSILON] for Mode: %s, Wavelet: %s, '
           'Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_a))
    assert_(rms_a < epsilon, msg=msg)

    msg = ('[RMS_D > EPSILON] for Mode: %s, Wavelet: %s, '
           'Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_d))
    assert_(rms_d < epsilon, msg=msg) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:17,代碼來源:test_matlab_compatibility.py

示例10: test_dwt_idwt_dtypes

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_idwt_dtypes():
    wavelet = pywt.Wavelet('haar')
    for dt_in, dt_out in zip(dtypes_in, dtypes_out):
        x = np.ones(4, dtype=dt_in)
        errmsg = "wrong dtype returned for {0} input".format(dt_in)

        cA, cD = pywt.dwt(x, wavelet)
        assert_(cA.dtype == cD.dtype == dt_out, "dwt: " + errmsg)

        x_roundtrip = pywt.idwt(cA, cD, wavelet)
        assert_(x_roundtrip.dtype == dt_out, "idwt: " + errmsg) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:13,代碼來源:test_dwt_idwt.py

示例11: test_dwt_idwt_basic_complex

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_idwt_basic_complex():
    x = np.asarray([3, 7, 1, 1, -2, 5, 4, 6])
    x = x + 0.5j*x
    cA, cD = pywt.dwt(x, 'db2')
    cA_expect = np.asarray([5.65685425, 7.39923721, 0.22414387, 3.33677403,
                            7.77817459])
    cA_expect = cA_expect + 0.5j*cA_expect
    cD_expect = np.asarray([-2.44948974, -1.60368225, -4.44140056, -0.41361256,
                            1.22474487])
    cD_expect = cD_expect + 0.5j*cD_expect
    assert_allclose(cA, cA_expect)
    assert_allclose(cD, cD_expect)

    x_roundtrip = pywt.idwt(cA, cD, 'db2')
    assert_allclose(x_roundtrip, x, rtol=1e-10) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:17,代碼來源:test_dwt_idwt.py

示例12: test_dwt_single_axis

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_single_axis():
    x = [[3, 7, 1, 1],
         [-2, 5, 4, 6]]

    cA, cD = pywt.dwt(x, 'db2', axis=-1)

    cA0, cD0 = pywt.dwt(x[0], 'db2')
    cA1, cD1 = pywt.dwt(x[1], 'db2')

    assert_allclose(cA[0], cA0)
    assert_allclose(cA[1], cA1)

    assert_allclose(cD[0], cD0)
    assert_allclose(cD[1], cD1) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:16,代碼來源:test_dwt_idwt.py

示例13: test_idwt_single_axis

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_idwt_single_axis():
    x = [[3, 7, 1, 1],
         [-2, 5, 4, 6]]

    x = np.asarray(x)
    x = x + 1j*x   # test with complex data
    cA, cD = pywt.dwt(x, 'db2', axis=-1)

    x0 = pywt.idwt(cA[0], cD[0], 'db2', axis=-1)
    x1 = pywt.idwt(cA[1], cD[1], 'db2', axis=-1)

    assert_allclose(x[0], x0)
    assert_allclose(x[1], x1) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:15,代碼來源:test_dwt_idwt.py

示例14: test_dwt_axis_arg

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_dwt_axis_arg():
    x = [[3, 7, 1, 1],
         [-2, 5, 4, 6]]

    cA_, cD_ = pywt.dwt(x, 'db2', axis=-1)
    cA, cD = pywt.dwt(x, 'db2', axis=1)

    assert_allclose(cA_, cA)
    assert_allclose(cD_, cD) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:11,代碼來源:test_dwt_idwt.py

示例15: test_idwt_axis_arg

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import dwt [as 別名]
def test_idwt_axis_arg():
    x = [[3, 7, 1, 1],
         [-2, 5, 4, 6]]

    cA, cD = pywt.dwt(x, 'db2', axis=1)

    x_ = pywt.idwt(cA, cD, 'db2', axis=-1)
    x = pywt.idwt(cA, cD, 'db2', axis=1)

    assert_allclose(x_, x) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:12,代碼來源:test_dwt_idwt.py


注:本文中的pywt.dwt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。