本文整理匯總了Python中pywt.coeffs_to_array方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.coeffs_to_array方法的具體用法?Python pywt.coeffs_to_array怎麽用?Python pywt.coeffs_to_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pywt
的用法示例。
在下文中一共展示了pywt.coeffs_to_array方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_coeffs_to_array
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def test_coeffs_to_array():
# single element list returns the first element
a_coeffs = [np.arange(8).reshape(2, 4), ]
arr, arr_slices = pywt.coeffs_to_array(a_coeffs)
assert_allclose(arr, a_coeffs[0])
assert_allclose(arr, arr[arr_slices[0]])
assert_raises(ValueError, pywt.coeffs_to_array, [])
# invalid second element: array as in wavedec, but not 1D
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0], ] * 2)
# invalid second element: tuple as in wavedec2, but not a 3-tuple
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0],
(a_coeffs[0], )])
# coefficients as None is not supported
assert_raises(ValueError, pywt.coeffs_to_array, [None, ])
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs,
(None, None, None)])
# invalid type for second coefficient list element
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs, None])
# use an invalid key name in the coef dictionary
coeffs = [np.array([0]), dict(d=np.array([0]), c=np.array([0]))]
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
示例2: test_wavedecn_coeff_reshape_even
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def test_wavedecn_coeff_reshape_even():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 28
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
for wave in wavelist:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = params[f]['dec'](x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
示例3: test_coeffs_to_array_padding
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def test_coeffs_to_array_padding():
rng = np.random.RandomState(1234)
x1 = rng.randn(32, 32)
mode = 'symmetric'
coeffs = pywt.wavedecn(x1, 'db2', mode=mode)
# padding=None raises a ValueError when tight packing is not possible
assert_raises(ValueError, pywt.coeffs_to_array, coeffs, padding=None)
# set padded values to nan
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, padding=np.nan)
npad = np.sum(np.isnan(coeff_arr))
assert_(npad > 0)
# pad with zeros
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, padding=0)
assert_(np.sum(np.isnan(coeff_arr)) == 0)
assert_(np.sum(coeff_arr == 0) == npad)
# Haar case with N as a power of 2 can be tightly packed
coeffs_haar = pywt.wavedecn(x1, 'haar', mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs_haar, padding=None)
# shape of coeff_arr will match in this case, but not in general
assert_equal(coeff_arr.shape, x1.shape)
示例4: test_waverecn_coeff_reshape_odd
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def test_waverecn_coeff_reshape_odd():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
rng = np.random.RandomState(1234)
x1 = rng.randn(35, 33)
for mode in pywt.Modes.modes:
for wave in ['haar', ]:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = pywt.wavedecn(x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
x1r = pywt.waverecn(coeffs2, w, mode=mode)
# truncate reconstructed values to original shape
x1r = x1r[[slice(s) for s in x1.shape]]
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
示例5: hfilter
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def hfilter(diff_image, var_image, threshold=1, ndamp=10):
"""
This code was inspired from: https://github.com/spacetelescope/sprint_notebooks/blob/master/lucy_damped_haar.ipynb
I believe it was initially written by Justin Ely: https://github.com/justincely
It was buggy and not working properly with every image sizes.
I have thus exchanged it by using pyWavelet (pywt) and a custom function htrans
to calculate the matrix for the var_image.
"""
him, coeff_slices = pywt.coeffs_to_array(pywt.wavedec2(diff_image.astype(np.float), 'haar'), padding=0)
dvarim = htrans(var_image.astype(np.float))
sqhim = ((him/threshold)**2)/dvarim
index = np.where(sqhim < 1)
if len(index[0]) == 0:
return diff_image
# Eq. 8 of White is derived leading to N*x^(N-1)-(N-1)*x^N :DOI: 10.1117/12.176819
sqhim = sqhim[index] * (ndamp * sqhim[index]**(ndamp-1) - (ndamp-1)*sqhim[index]**ndamp)
him[index] = sign(threshold*np.sqrt(dvarim[index] * sqhim), him[index])
return pywt.waverec2(pywt.array_to_coeffs(him, coeff_slices, output_format='wavedec2'), 'haar')[:diff_image.shape[0],:diff_image.shape[1]]
示例6: __init__
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def __init__(self,nrow=256,ncol=256,wavelet='db4',level=3,fwd_mode='recon',\
dtype=np.float64,name=None):
# Save parameters
self.wavelet = wavelet
self.level = level
shape0 = (nrow,ncol)
shape1 = (nrow,ncol)
dtype0 = dtype
dtype1 = dtype
if pywt.Wavelet(wavelet).orthogonal:
svd_avail = True #SVD calculation assumes an orthogonal wavelet
else:
svd_avail = False
BaseLinTrans.__init__(self, shape0, shape1, dtype0, dtype1,\
svd_avail=svd_avail,name=name)
# Set the mode to periodic to make the wavelet orthogonal
self.mode = 'periodization'
# Send a zero image to get the coefficient slices
im = np.zeros((nrow,ncol))
coeffs = pywt.wavedec2(im, wavelet=self.wavelet, level=self.level, \
mode=self.mode)
_, self.coeff_slices = pywt.coeffs_to_array(coeffs)
# Confirm that fwd_mode is valid
if (fwd_mode != 'recon') and (fwd_mode != 'analysis'):
raise common.VpException('fwd_mode must be recon or analysis')
self.fwd_mode = fwd_mode
示例7: analysis
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def analysis(self,z0):
"""
Analysis: image -> coefficients
"""
coeffs = pywt.wavedec2(z0, wavelet=self.wavelet, level=self.level, \
mode=self.mode)
z1, _ = pywt.coeffs_to_array(coeffs)
return z1
示例8: __init__
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def __init__(self, dims, dirs=(0, 1), wavelet='haar',
level=1, dtype='float64'):
if pywt is None:
raise ModuleNotFoundError('The wavelet operator requires '
'the pywt package t be installed. '
'Run "pip install PyWavelets" or '
'"conda install pywavelets".')
_checkwavelet(wavelet)
# define padding for length to be power of 2
ndimpow2 = [max(2 ** ceil(log(dims[dir], 2)), 2 ** level)
for dir in dirs]
pad = [(0, 0)] * len(dims)
for i, dir in enumerate(dirs):
pad[dir] = (0, ndimpow2[i] - dims[dir])
self.pad = Pad(dims, pad)
self.dims = dims
self.dirs = dirs
self.dimsd = list(dims)
for i, dir in enumerate(dirs):
self.dimsd[dir] = ndimpow2[i]
# apply transform once again to find out slices
_, self.sl = \
pywt.coeffs_to_array(pywt.wavedec2(np.ones(self.dimsd),
wavelet=wavelet,
level=level,
mode='periodization',
axes=self.dirs),
axes=self.dirs)
self.wavelet = wavelet
self.waveletadj = _adjointwavelet(wavelet)
self.level = level
self.shape = (int(np.prod(self.dimsd)), int(np.prod(self.dims)))
self.dtype = np.dtype(dtype)
self.explicit = False
示例9: _matvec
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def _matvec(self, x):
x = self.pad.matvec(x)
x = np.reshape(x, self.dimsd)
y = pywt.coeffs_to_array(pywt.wavedec2(x, wavelet=self.wavelet,
level=self.level,
mode='periodization',
axes=self.dirs),
axes=(self.dirs))[0]
return y.ravel()
示例10: __init__
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def __init__(self, dims, dir=0, wavelet='haar', level=1, dtype='float64'):
if pywt is None:
raise ModuleNotFoundError(pywt_message)
_checkwavelet(wavelet)
if isinstance(dims, int):
dims = (dims, )
# define padding for length to be power of 2
ndimpow2 = max(2**ceil(log(dims[dir], 2)), 2 ** level)
pad = [(0, 0)] * len(dims)
pad[dir] = (0, ndimpow2 - dims[dir])
self.pad = Pad(dims, pad)
self.dims = dims
self.dir = dir
self.dimsd = list(dims)
self.dimsd[self.dir] = ndimpow2
# apply transform to find out slices
_, self.sl = \
pywt.coeffs_to_array(pywt.wavedecn(np.ones(self.dimsd),
wavelet=wavelet,
level=level,
mode='periodization',
axes=(self.dir,)),
axes=(self.dir,))
self.wavelet = wavelet
self.waveletadj = _adjointwavelet(wavelet)
self.level = level
self.reshape = True if len(self.dims) > 1 else False
self.shape = (int(np.prod(self.dimsd)), int(np.prod(self.dims)))
self.dtype = np.dtype(dtype)
self.explicit = False
示例11: _matvec
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def _matvec(self, x):
x = self.pad.matvec(x)
if self.reshape:
x = np.reshape(x, self.dimsd)
y = pywt.coeffs_to_array(pywt.wavedecn(x, wavelet=self.wavelet,
level=self.level,
mode='periodization',
axes=(self.dir,)),
axes=(self.dir,))[0]
return y.ravel()
示例12: wavelet_transform
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def wavelet_transform(x):
w_coeffs_rgb = [] # np.zeros(x.shape[3], np.prod(x.shape))
for i in range(x.shape[3]):
w_coeffs_list = pywt.wavedec2(x[0,:,:,i], 'db4', level=None, mode='periodization')
w_coeffs, coeff_slices = pywt.coeffs_to_array(w_coeffs_list)
w_coeffs_rgb.append(w_coeffs)
w_coeffs_rgb = np.array(w_coeffs_rgb)
return w_coeffs_rgb, coeff_slices
示例13: test_wavedecn_coeff_reshape_axes_subset
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def test_wavedecn_coeff_reshape_axes_subset():
# verify round trip is correct when only a subset of axes are transformed:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
mode = 'symmetric'
w = pywt.Wavelet('db2')
N = 16
ndim = 3
for axes in [(-1, ), (0, ), (1, ), (0, 1), (1, 2), (0, 2), None]:
x1 = rng.randn(*([N] * ndim))
coeffs = pywt.wavedecn(x1, w, mode=mode, axes=axes)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, axes=axes)
if axes is not None:
# if axes is not None, it must be provided to coeffs_to_array
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
# mismatched axes size
assert_raises(ValueError, pywt.coeffs_to_array, coeffs,
axes=(0, 1, 2, 3))
assert_raises(ValueError, pywt.coeffs_to_array, coeffs,
axes=())
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
x1r = pywt.waverecn(coeffs2, w, mode=mode, axes=axes)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
示例14: htrans
# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import coeffs_to_array [as 別名]
def htrans(A):
h0 = A
res = []
while h0.shape[0]>1 and h0.shape[1]>1:
h0, (hx, hy, hc) = pywt.dwt2(h0, 'haar')
res = [(h0, h0, h0)]+res
out, _ = pywt.coeffs_to_array([h0]+res, padding=1)
return out