當前位置: 首頁>>代碼示例>>Python>>正文


Python pywt.Wavelet方法代碼示例

本文整理匯總了Python中pywt.Wavelet方法的典型用法代碼示例。如果您正苦於以下問題:Python pywt.Wavelet方法的具體用法?Python pywt.Wavelet怎麽用?Python pywt.Wavelet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pywt的用法示例。


在下文中一共展示了pywt.Wavelet方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _wavelet_coefs

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def _wavelet_coefs(data, wavelet_name='db4'):
    """Compute Discrete Wavelet Transform coefficients.

    Parameters
    ----------
    data : ndarray, shape (n_channels, n_times)

    wavelet_name : str (default: db4)
         Wavelet name (to be used with ``pywt.Wavelet``). The full list of
         Wavelet names are given by: ``[name for family in pywt.families() for
         name in pywt.wavelist(family)]``.

    Returns
    -------
    coefs : list of ndarray
         Coefficients of a DWT (Discrete Wavelet Transform). ``coefs[0]`` is
         the array of approximation coefficient and ``coefs[1:]`` is the list
         of detail coefficients.
    """
    wavelet = pywt.Wavelet(wavelet_name)
    levdec = min(pywt.dwt_max_level(data.shape[-1], wavelet.dec_len), 6)
    coefs = pywt.wavedec(data, wavelet=wavelet, level=levdec)
    return coefs 
開發者ID:mne-tools,項目名稱:mne-features,代碼行數:25,代碼來源:utils.py

示例2: compute_wavelet_feature_vector

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def compute_wavelet_feature_vector(image, wavelet='db6'):
    image_np = np.array(image)
    rgb = [image_np[:, :, i] for i in (0, 1, 2)]

    if isinstance(wavelet, basestring):
        wavelet = pywt.Wavelet(wavelet)

    feature_vector = []
    for c in rgb:
        level = pywt.dwt_max_level(min(c.shape[0], c.shape[1]), wavelet.dec_len)
        levels = pywt.wavedec2(c, wavelet, mode='sym', level=level)
        for coeffs in levels:
            if not isinstance(coeffs, tuple):
                coeffs = (coeffs,)
            for w in coeffs:
                w_flat = w.flatten()
                feature_vector += [float(np.mean(w_flat)), float(np.std(w_flat))]

    return feature_vector 
開發者ID:seanbell,項目名稱:opensurfaces,代碼行數:21,代碼來源:wavelets.py

示例3: check_coefficients

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def check_coefficients(wavelet):
    epsilon = 5e-11
    level = 10
    w = pywt.Wavelet(wavelet)
    # Lowpass filter coefficients sum to sqrt2
    res = np.sum(w.dec_lo)-np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # sum even coef = sum odd coef = 1 / sqrt(2)
    res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)

    res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Highpass filter coefficients sum to zero
    res = np.sum(w.dec_hi)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:22,代碼來源:test_wavelet.py

示例4: test_custom_wavelet

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_custom_wavelet():
    haar_custom1 = pywt.Wavelet('Custom Haar Wavelet',
                                filter_bank=_CustomHaarFilterBank())
    haar_custom1.orthogonal = True
    haar_custom1.biorthogonal = True

    val = np.sqrt(2) / 2
    filter_bank = ([val]*2, [-val, val], [val]*2, [val, -val])
    haar_custom2 = pywt.Wavelet('Custom Haar Wavelet',
                                filter_bank=filter_bank)

    # check expected default wavelet properties
    assert_(~haar_custom2.orthogonal)
    assert_(~haar_custom2.biorthogonal)
    assert_(haar_custom2.symmetry == 'unknown')
    assert_(haar_custom2.family_name == '')
    assert_(haar_custom2.short_family_name == '')
    assert_(haar_custom2.vanishing_moments_phi == 0)
    assert_(haar_custom2.vanishing_moments_psi == 0)

    # Some properties can be set by the user
    haar_custom2.orthogonal = True
    haar_custom2.biorthogonal = True 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:25,代碼來源:test_wavelet.py

示例5: test_wavedecn_coeff_reshape_even

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_wavedecn_coeff_reshape_even():
    # verify round trip is correct:
    #   wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
    # This is done for wavedec{1, 2, n}
    rng = np.random.RandomState(1234)
    params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
              'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
              'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
    N = 28
    for f in params:
        x1 = rng.randn(*([N] * params[f]['d']))
        for mode in pywt.Modes.modes:
            for wave in wavelist:
                w = pywt.Wavelet(wave)
                maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
                if maxlevel == 0:
                    continue

                coeffs = params[f]['dec'](x1, w, mode=mode)
                coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
                coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
                                               output_format=f)
                x1r = params[f]['rec'](coeffs2, w, mode=mode)

                assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:27,代碼來源:test_multilevel.py

示例6: test_waverecn_coeff_reshape_odd

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_waverecn_coeff_reshape_odd():
    # verify round trip is correct:
    #   wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
    rng = np.random.RandomState(1234)
    x1 = rng.randn(35, 33)
    for mode in pywt.Modes.modes:
        for wave in ['haar', ]:
            w = pywt.Wavelet(wave)
            maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
            if maxlevel == 0:
                continue
            coeffs = pywt.wavedecn(x1, w, mode=mode)
            coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
            coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
            x1r = pywt.waverecn(coeffs2, w, mode=mode)
            # truncate reconstructed values to original shape
            x1r = x1r[[slice(s) for s in x1.shape]]
            assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:20,代碼來源:test_multilevel.py

示例7: test_swt_dtypes

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_swt_dtypes():
    wavelet = pywt.Wavelet('haar')
    for dt_in, dt_out in zip(dtypes_in, dtypes_out):
        errmsg = "wrong dtype returned for {0} input".format(dt_in)

        # swt
        x = np.ones(8, dtype=dt_in)
        (cA2, cD2), (cA1, cD1) = pywt.swt(x, wavelet, level=2)
        assert_(cA2.dtype == cD2.dtype == cA1.dtype == cD1.dtype == dt_out,
                "swt: " + errmsg)

        # swt2
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', FutureWarning)
            x = np.ones((8, 8), dtype=dt_in)
            cA, (cH, cV, cD) = pywt.swt2(x, wavelet, level=1)[0]
            assert_(cA.dtype == cH.dtype == cV.dtype == cD.dtype == dt_out,
                    "swt2: " + errmsg) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:20,代碼來源:test_swt.py

示例8: test_swt2_axes

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_swt2_axes():
    atol = 1e-14
    current_wavelet = pywt.Wavelet('db2')
    input_length_power = int(np.ceil(np.log2(max(
        current_wavelet.dec_len,
        current_wavelet.rec_len))))
    input_length = 2**(input_length_power)
    X = np.arange(input_length**2).reshape(input_length, input_length)
    with warnings.catch_warnings():
        warnings.simplefilter('ignore', FutureWarning)
        (cA1, (cH1, cV1, cD1)) = pywt.swt2(X, current_wavelet, level=1)[0]
        # opposite order
        (cA2, (cH2, cV2, cD2)) = pywt.swt2(X, current_wavelet, level=1,
                                           axes=(1, 0))[0]
        assert_allclose(cA1, cA2, atol=atol)
        assert_allclose(cH1, cV2, atol=atol)
        assert_allclose(cV1, cH2, atol=atol)
        assert_allclose(cD1, cD2, atol=atol)

        # duplicate axes not allowed
        assert_raises(ValueError, pywt.swt2, X, current_wavelet, 1,
                      axes=(0, 0))
        # too few axes
        assert_raises(ValueError, pywt.swt2, X, current_wavelet, 1, axes=(0, )) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:26,代碼來源:test_swt.py

示例9: test_accuracy_pymatbridge

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_accuracy_pymatbridge():
    rstate = np.random.RandomState(1234)
    # max RMSE (was 1.0e-10, is reduced to 5.0e-5 due to different coefficents)
    epsilon = 5.0e-5
    epsilon_pywt_coeffs = 1.0e-10
    mlab.start()
    try:
        for wavelet in wavelets:
            w = pywt.Wavelet(wavelet)
            mlab.set_variable('wavelet', wavelet)
            for N in _get_data_sizes(w):
                data = rstate.randn(N)
                mlab.set_variable('data', data)
                for pmode, mmode in modes:
                    ma, md = _compute_matlab_result(data, wavelet, mmode)
                    yield _check_accuracy, data, w, pmode, ma, md, wavelet, epsilon
                    ma, md = _load_matlab_result_pywt_coeffs(data, wavelet, mmode)
                    yield _check_accuracy, data, w, pmode, ma, md, wavelet, epsilon_pywt_coeffs

    finally:
        mlab.stop() 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:test_matlab_compatibility.py

示例10: _compute_matlab_result

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def _compute_matlab_result(data, wavelet, mmode):
    """ Compute the result using MATLAB.

    This function assumes that the Matlab variables `wavelet` and `data` have
    already been set externally.
    """
    if np.any((wavelet == np.array(['coif6', 'coif7', 'coif8', 'coif9', 'coif10', 'coif11', 'coif12', 'coif13', 'coif14', 'coif15', 'coif16', 'coif17'])),axis=0):
        w = pywt.Wavelet(wavelet)
        mlab.set_variable('Lo_D', w.dec_lo)
        mlab.set_variable('Hi_D', w.dec_hi)
        mlab_code = ("[ma, md] = dwt(data, Lo_D, Hi_D, 'mode', '%s');" % mmode)
    else:
        mlab_code = "[ma, md] = dwt(data, wavelet, 'mode', '%s');" % mmode
    res = mlab.run_code(mlab_code)
    if not res['success']:
        raise RuntimeError("Matlab failed to execute the provided code. "
                           "Check that the wavelet toolbox is installed.")
    # need np.asarray because sometimes the output is a single float64
    ma = np.asarray(mlab.get_variable('ma'))
    md = np.asarray(mlab.get_variable('md'))
    return ma, md 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:23,代碼來源:test_matlab_compatibility.py

示例11: test_3D_reconstruct

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_3D_reconstruct():
    data = np.array([
        [[0, 4, 1, 5, 1, 4],
         [0, 5, 26, 3, 2, 1],
         [5, 8, 2, 33, 4, 9],
         [2, 5, 19, 4, 19, 1]],
        [[1, 5, 1, 2, 3, 4],
         [7, 12, 6, 52, 7, 8],
         [2, 12, 3, 52, 6, 8],
         [5, 2, 6, 78, 12, 2]]])

    wavelet = pywt.Wavelet('haar')
    for mode in pywt.Modes.modes:
        d = pywt.dwtn(data, wavelet, mode=mode)
        assert_allclose(data, pywt.idwtn(d, wavelet, mode=mode),
                        rtol=1e-13, atol=1e-13) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:test_multidim.py

示例12: test_stride

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_stride():
    wavelet = pywt.Wavelet('haar')

    for dtype in ('float32', 'float64'):
        data = np.array([[0, 4, 1, 5, 1, 4],
                         [0, 5, 6, 3, 2, 1],
                         [2, 5, 19, 4, 19, 1]],
                        dtype=dtype)

        for mode in pywt.Modes.modes:
            expected = pywt.dwtn(data, wavelet)
            strided = np.ones((3, 12), dtype=data.dtype)
            strided[::-1, ::2] = data
            strided_dwtn = pywt.dwtn(strided[::-1, ::2], wavelet)
            for key in expected.keys():
                assert_allclose(strided_dwtn[key], expected[key]) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:18,代碼來源:test_multidim.py

示例13: test_3D_reconstruct_complex

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_3D_reconstruct_complex():
    # All dimensions even length so `take` does not need to be specified
    data = np.array([
        [[0, 4, 1, 5, 1, 4],
         [0, 5, 26, 3, 2, 1],
         [5, 8, 2, 33, 4, 9],
         [2, 5, 19, 4, 19, 1]],
        [[1, 5, 1, 2, 3, 4],
         [7, 12, 6, 52, 7, 8],
         [2, 12, 3, 52, 6, 8],
         [5, 2, 6, 78, 12, 2]]])
    data = data + 1j

    wavelet = pywt.Wavelet('haar')
    d = pywt.dwtn(data, wavelet)
    # idwtn creates even-length shapes (2x dwtn size)
    original_shape = [slice(None, s) for s in data.shape]
    assert_allclose(data, pywt.idwtn(d, wavelet)[original_shape],
                    rtol=1e-13, atol=1e-13) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:21,代碼來源:test_multidim.py

示例14: test_idwtn_missing

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_idwtn_missing():
    # Test to confirm missing data behave as zeroes
    data = np.array([
        [0, 4, 1, 5, 1, 4],
        [0, 5, 6, 3, 2, 1],
        [2, 5, 19, 4, 19, 1]])

    wavelet = pywt.Wavelet('haar')

    coefs = pywt.dwtn(data, wavelet)

    # No point removing zero, or all
    for num_missing in range(1, len(coefs)):
        for missing in combinations(coefs.keys(), num_missing):
            missing_coefs = coefs.copy()
            for key in missing:
                del missing_coefs[key]
            LL = missing_coefs.get('aa', None)
            HL = missing_coefs.get('da', None)
            LH = missing_coefs.get('ad', None)
            HH = missing_coefs.get('dd', None)

            assert_allclose(pywt.idwt2((LL, (HL, LH, HH)), wavelet),
                            pywt.idwtn(missing_coefs, 'haar'), atol=1e-15) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:26,代碼來源:test_multidim.py

示例15: test_error_on_invalid_keys

# 需要導入模塊: import pywt [as 別名]
# 或者: from pywt import Wavelet [as 別名]
def test_error_on_invalid_keys():
    data = np.array([
        [0, 4, 1, 5, 1, 4],
        [0, 5, 6, 3, 2, 1],
        [2, 5, 19, 4, 19, 1]])

    wavelet = pywt.Wavelet('haar')

    LL, (HL, LH, HH) = pywt.dwt2(data, wavelet)

    # unexpected key
    d = {'aa': LL, 'da': HL, 'ad': LH, 'dd': HH, 'ff': LH}
    assert_raises(ValueError, pywt.idwtn, d, wavelet)

    # mismatched key lengths
    d = {'a': LL, 'da': HL, 'ad': LH, 'dd': HH}
    assert_raises(ValueError, pywt.idwtn, d, wavelet) 
開發者ID:hello-sea,項目名稱:DeepLearning_Wavelet-LSTM,代碼行數:19,代碼來源:test_multidim.py


注:本文中的pywt.Wavelet方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。