當前位置: 首頁>>代碼示例>>Python>>正文


Python BertTokenizer.from_pretrained方法代碼示例

本文整理匯總了Python中pytorch_transformers.BertTokenizer.from_pretrained方法的典型用法代碼示例。如果您正苦於以下問題:Python BertTokenizer.from_pretrained方法的具體用法?Python BertTokenizer.from_pretrained怎麽用?Python BertTokenizer.from_pretrained使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pytorch_transformers.BertTokenizer的用法示例。


在下文中一共展示了BertTokenizer.from_pretrained方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, args):
        try:
            from pytorch_transformers import BertTokenizer
            from pytorch_transformers.tokenization_utils import clean_up_tokenization
        except ImportError:
            raise ImportError(
                'Please install 1.0.0 version of pytorch_transformers'
                'with: pip install pytorch-transformers'
            )

        if 'bpe_vocab_file' in args:
            self.bert_tokenizer = BertTokenizer(
                args.bpe_vocab_file,
                do_lower_case=not args.bpe_cased
            )
        else:
            vocab_file_name = 'bert-base-cased' if args.bpe_cased else 'bert-base-uncased'
            self.bert_tokenizer = BertTokenizer.from_pretrained(vocab_file_name)
            self.clean_up_tokenization = clean_up_tokenization 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:21,代碼來源:hf_bert_bpe.py

示例2: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, model_path: str=None) -> None:
        super().__init__()
        "Requires the BertTokenizer from pytorch_transformers"
        # pip install pytorch_transformers
        import os
        import torch
        from pytorch_transformers import BertTokenizer, cached_path
        from training.transformer_utils.model import TransformerWithClfHeadAndAdapters
        try:
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            self.config = torch.load(cached_path(os.path.join(model_path, "model_training_args.bin")))
            self.model = TransformerWithClfHeadAndAdapters(self.config["config"],
                                                           self.config["config_ft"]).to(self.device)
            state_dict = torch.load(cached_path(os.path.join(model_path, "model_weights.pth")),
                                    map_location=self.device)
            self.model.load_state_dict(state_dict)
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False)
        except:
            raise Exception("Require a valid transformer model file ({0}/model_weights.pth) "
                            "and its config file ({0}/model_training_args.bin)."
                            .format(model_path)) 
開發者ID:prrao87,項目名稱:fine-grained-sentiment,代碼行數:23,代碼來源:classifiers.py

示例3: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, model_file: str=None) -> None:
        "Requires the BertTokenizer from pytorch_transformers"
        # pip install pytorch_transformers
        import os
        import torch
        from pytorch_transformers import BertTokenizer, cached_path
        from training.transformer_utils.model import TransformerWithClfHeadAndAdapters
        try:
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            self.config = torch.load(cached_path(os.path.join(model_file, "model_training_args.bin")))
            self.model = TransformerWithClfHeadAndAdapters(self.config["config"],
                                                           self.config["config_ft"]).to(self.device)
            state_dict = torch.load(cached_path(os.path.join(model_file, "model_weights.pth")),
                                    map_location=self.device)
            self.model.load_state_dict(state_dict)
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False)
        except:
            raise Exception("Require a valid transformer model file ({0}/model_weights.pth) "
                            "and its config file ({0}/model_training_args.bin)."
                            .format(model_file)) 
開發者ID:prrao87,項目名稱:fine-grained-sentiment,代碼行數:22,代碼來源:explainer.py

示例4: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, args= None, device='cuda', bert_model_path='bert-base-uncased', batch_size=10, learning_rate = 5e-5, weight_decay=0, additional_features=None):
        if args is not None:
            self.args = vars(args)

        assert device in ['cuda', 'cpu']

        if not args:
            self.args = {}
            self.args['bert_model_path'] = bert_model_path
            self.args['device'] = device
            self.args['learning_rate'] = learning_rate
            self.args['weight_decay'] = weight_decay
            self.args['batch_size'] = batch_size

        self.log = logging.getLogger()



        self.bert_tokenizer = BertTokenizer.from_pretrained(self.args['bert_model_path'])
        if os.path.exists(self.args['bert_model_path']):
            if os.path.exists(os.path.join(self.args['bert_model_path'], CONFIG_NAME)):
                config = BertConfig.from_json_file(os.path.join(self.args['bert_model_path'], CONFIG_NAME))
            elif os.path.exists(os.path.join(self.args['bert_model_path'], 'bert_config.json')):
                config = BertConfig.from_json_file(os.path.join(self.args['bert_model_path'], 'bert_config.json'))
            else:
                raise ValueError("Cannot find a configuration for the BERT model you are attempting to load.")

        self.loss_function = torch.nn.MSELoss()

        config.pretrained_config_archive_map['additional_features'] = additional_features

        self.regressor_net = BertSimilarityRegressor.from_pretrained(self.args['bert_model_path'], config=config)
        self.optimizer = torch.optim.Adam(
            self.regressor_net.parameters(),
            weight_decay=self.args['weight_decay'],
            lr=self.args['learning_rate']
        )
        self.log.info('Initialized BertSentencePairSimilarity model from %s' % self.args['bert_model_path']) 
開發者ID:AndriyMulyar,項目名稱:semantic-text-similarity,代碼行數:40,代碼來源:similarity.py

示例5: load_from_file

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def load_from_file(cls, vocab_file):
        from pytorch_transformers import BertTokenizer
        return cls(BertTokenizer.from_pretrained(vocab_file)) 
開發者ID:Alexander-H-Liu,項目名稱:End-to-end-ASR-Pytorch,代碼行數:5,代碼來源:text.py

示例6: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, mode: str = 'bert-base-uncased'):
        """Initialization."""
        super().__init__()
        self._tokenizer = BertTokenizer.from_pretrained(mode) 
開發者ID:NTMC-Community,項目名稱:MatchZoo-py,代碼行數:6,代碼來源:bert_preprocessor.py

示例7: validate

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def validate(args, device_id, pt, step):
    device = "cpu" if args.visible_gpus == '-1' else "cuda"
    if (pt != ''):
        test_from = pt
    else:
        test_from = args.test_from
    logger.info('Loading checkpoint from %s' % test_from)
    checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage)
    opt = vars(checkpoint['opt'])
    for k in opt.keys():
        if (k in model_flags):
            setattr(args, k, opt[k])
    print(args)

    model = AbsSummarizer(args, device, checkpoint)
    model.eval()

    valid_iter = data_loader.Dataloader(args, load_dataset(args, 'valid', shuffle=False),
                                        args.batch_size, device,
                                        shuffle=False, is_test=False)

    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, cache_dir=args.temp_dir)
    symbols = {'BOS': tokenizer.vocab['[unused0]'], 'EOS': tokenizer.vocab['[unused1]'],
               'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}

    valid_loss = abs_loss(model.generator, symbols, model.vocab_size, train=False, device=device)

    trainer = build_trainer(args, device_id, model, None, valid_loss)
    stats = trainer.validate(valid_iter, step)
    return stats.xent() 
開發者ID:nlpyang,項目名稱:PreSumm,代碼行數:32,代碼來源:train_abstractive.py

示例8: test_abs

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def test_abs(args, device_id, pt, step):
    device = "cpu" if args.visible_gpus == '-1' else "cuda"
    if (pt != ''):
        test_from = pt
    else:
        test_from = args.test_from
    logger.info('Loading checkpoint from %s' % test_from)

    checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage)
    opt = vars(checkpoint['opt'])
    for k in opt.keys():
        if (k in model_flags):
            setattr(args, k, opt[k])
    print(args)

    model = AbsSummarizer(args, device, checkpoint)
    model.eval()

    test_iter = data_loader.Dataloader(args, load_dataset(args, 'test', shuffle=False),
                                       args.test_batch_size, device,
                                       shuffle=False, is_test=True)
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, cache_dir=args.temp_dir)
    symbols = {'BOS': tokenizer.vocab['[unused0]'], 'EOS': tokenizer.vocab['[unused1]'],
               'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}
    predictor = build_predictor(args, tokenizer, symbols, model, logger)
    predictor.translate(test_iter, step) 
開發者ID:nlpyang,項目名稱:PreSumm,代碼行數:28,代碼來源:train_abstractive.py

示例9: test_text_abs

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def test_text_abs(args, device_id, pt, step):
    device = "cpu" if args.visible_gpus == '-1' else "cuda"
    if (pt != ''):
        test_from = pt
    else:
        test_from = args.test_from
    logger.info('Loading checkpoint from %s' % test_from)

    checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage)
    opt = vars(checkpoint['opt'])
    for k in opt.keys():
        if (k in model_flags):
            setattr(args, k, opt[k])
    print(args)

    model = AbsSummarizer(args, device, checkpoint)
    model.eval()

    test_iter = data_loader.Dataloader(args, load_dataset(args, 'test', shuffle=False),
                                       args.test_batch_size, device,
                                       shuffle=False, is_test=True)
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, cache_dir=args.temp_dir)
    symbols = {'BOS': tokenizer.vocab['[unused0]'], 'EOS': tokenizer.vocab['[unused1]'],
               'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}
    predictor = build_predictor(args, tokenizer, symbols, model, logger)
    predictor.translate(test_iter, step) 
開發者ID:nlpyang,項目名稱:PreSumm,代碼行數:28,代碼來源:train_abstractive.py

示例10: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, pretrained_model_name_for_tokenizer, max_vocabulary_size,
                 max_tokenization_length, embedding_dim, num_classes=1, num_recurrent_layers=1,
                 use_bidirectional=False, hidden_size=128, dropout_rate=0.10, use_gpu=False):
        super(SimpleRNN, self).__init__()
        self.num_recurrent_layers = num_recurrent_layers
        self.use_bidirectional = use_bidirectional
        self.hidden_size = hidden_size
        self.use_gpu = use_gpu

        # Configure tokenizer
        self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_for_tokenizer)
        self.tokenizer.max_len = max_tokenization_length

        # Define additional layers & utilities specific to the finetuned task
        # Embedding Layer
        self.embedding = nn.Embedding(num_embeddings=max_vocabulary_size,
                                      embedding_dim=embedding_dim)

        # Dropout to prevent overfitting
        self.dropout = nn.Dropout(p=dropout_rate)

        # Recurrent Layer
        self.lstm = nn.LSTM(input_size=embedding_dim,
                            hidden_size=hidden_size,
                            num_layers=num_recurrent_layers,
                            bidirectional=use_bidirectional,
                            batch_first=True)

        # Dense Layer for Classification
        self.clf = nn.Linear(in_features=hidden_size*2 if use_bidirectional else hidden_size,
                             out_features=num_classes) 
開發者ID:uzaymacar,項目名稱:comparatively-finetuning-bert,代碼行數:33,代碼來源:baseline_models.py

示例11: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, config, logger):
        super().__init__(config, logger)
        bert_model = bert_models.get_model(config['bert_base'], self.logger)
        self.tokenizer = BertTokenizer.from_pretrained(bert_model)
        # HACK! Until the transformers library adopts tokenizers, save and re-load vocab
        with tempfile.TemporaryDirectory() as d:
            self.tokenizer.save_vocabulary(d)
            # this tokenizer is ~4x faster as the BertTokenizer, per my measurements
            self.tokenizer = tk.BertWordPieceTokenizer(os.path.join(d, 'vocab.txt')) 
開發者ID:Georgetown-IR-Lab,項目名稱:OpenNIR,代碼行數:11,代碼來源:bert_vocab.py

示例12: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, pretrain_path, max_length): 
        nn.Module.__init__(self)
        # self.bert = BertModel.from_pretrained(pretrain_path)
        self.bert = BertForSequenceClassification.from_pretrained(
                pretrain_path,
                num_labels=2)
        self.max_length = max_length
        self.tokenizer = BertTokenizer.from_pretrained(os.path.join(
            pretrain_path, 'bert_vocab.txt'))
        self.modelName = 'Bert' 
開發者ID:thunlp,項目名稱:FewRel,代碼行數:12,代碼來源:ssss.py

示例13: __init__

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def __init__(self, tagged_sents, tag_to_index, config, word_to_embid=None):
        sents, tags_li,values_li = [], [], [] # list of lists
        self.config = config

        for sent in tagged_sents:
            words = [word_tag[0] for word_tag in sent]
            tags = [word_tag[1] for word_tag in sent]
            values = [word_tag[3] for word_tag in sent] #+++HANDE

            if self.config.model != 'LSTM' and self.config.model != 'BiLSTM':
                sents.append(["[CLS]"] + words + ["[SEP]"])
                tags_li.append(["<pad>"] + tags + ["<pad>"])
                values_li.append(["<pad>"] + values + ["<pad>"])
            else:
                sents.append(words)
                tags_li.append(tags)
                values_li.append(values)

        self.sents, self.tags_li, self.values_li = sents, tags_li, values_li
        if self.config.model == 'BertUncased':
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
        else:
            self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False)

        self.tag_to_index = tag_to_index
        self.word_to_embid = word_to_embid 
開發者ID:Helsinki-NLP,項目名稱:prosody,代碼行數:28,代碼來源:prosody_dataset.py

示例14: read_chinese

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def read_chinese(path):
        output_path = path + '_output.txt'
        content = path + '_sentence.txt'
        aspect = path + '_target.txt'
        polarity = path + '_label.txt'
        fin = open(content, 'r', encoding='utf-8', newline='\n', errors='ignore')
        reviews = fin.readlines()
        fin.close()
        for i in range(len(reviews)):
            reviews[i] = reviews[i].strip()

        fin = open(aspect, 'r', encoding='utf-8', newline='\n', errors='ignore')
        aspects = fin.readlines()
        fin.close()
        for i in range(len(aspects)):
            aspects[i] = aspects[i].strip()

        fin = open(polarity, 'r', encoding='utf-8', newline='\n', errors='ignore')
        polarities = fin.readlines()
        fin.close()
        for i in range(len(polarities)):
            polarities[i] = polarities[i].strip()

        from pytorch_transformers import BertTokenizer
        tokenizer = BertTokenizer.from_pretrained('bert_for_global_context-base-chinese', do_lower_case=True)

        with open(output_path, 'w', encoding='utf-8', newline='\n', errors='ignore') as f_out:
            print(len(reviews))
            print(len(aspects))
            print(len(polarities))

            for i in range(len(reviews)):

                if aspects[i] is '0':
                    aspects[i] = reviews[i]
                if aspects[i].replace(' ','') not in reviews[i]:
                    print(aspects[i].replace(' ',''))
                    continue

                reviews[i]=reviews[i].replace(aspects[i].replace(' ',''),' $T$ ')

                f_out.write(' '.join(tokenizer.tokenize(reviews[i])) + '\n')
                f_out.write(' '.join(tokenizer.tokenize(aspects[i].replace(' ',''))) + '\n')
                if polarities[i].strip() is '0':
                    f_out.write('1' + '\n')
                else:
                    f_out.write('-1' + '\n')

            f_out.close() 
開發者ID:yangheng95,項目名稱:LCF-ATEPC,代碼行數:51,代碼來源:chinese_preprocess.py

示例15: train_abs_single

# 需要導入模塊: from pytorch_transformers import BertTokenizer [as 別名]
# 或者: from pytorch_transformers.BertTokenizer import from_pretrained [as 別名]
def train_abs_single(args, device_id):
    init_logger(args.log_file)
    logger.info(str(args))
    device = "cpu" if args.visible_gpus == '-1' else "cuda"
    logger.info('Device ID %d' % device_id)
    logger.info('Device %s' % device)
    torch.manual_seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    if device_id >= 0:
        torch.cuda.set_device(device_id)
        torch.cuda.manual_seed(args.seed)

    if args.train_from != '':
        logger.info('Loading checkpoint from %s' % args.train_from)
        checkpoint = torch.load(args.train_from,
                                map_location=lambda storage, loc: storage)
        opt = vars(checkpoint['opt'])
        for k in opt.keys():
            if (k in model_flags):
                setattr(args, k, opt[k])
    else:
        checkpoint = None

    if (args.load_from_extractive != ''):
        logger.info('Loading bert from extractive model %s' % args.load_from_extractive)
        bert_from_extractive = torch.load(args.load_from_extractive, map_location=lambda storage, loc: storage)
        bert_from_extractive = bert_from_extractive['model']
    else:
        bert_from_extractive = None
    torch.manual_seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    def train_iter_fct():
        return data_loader.Dataloader(args, load_dataset(args, 'train', shuffle=True), args.batch_size, device,
                                      shuffle=True, is_test=False)

    model = AbsSummarizer(args, device, checkpoint, bert_from_extractive)
    if (args.sep_optim):
        optim_bert = model_builder.build_optim_bert(args, model, checkpoint)
        optim_dec = model_builder.build_optim_dec(args, model, checkpoint)
        optim = [optim_bert, optim_dec]
    else:
        optim = [model_builder.build_optim(args, model, checkpoint)]

    logger.info(model)

    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True, cache_dir=args.temp_dir)
    symbols = {'BOS': tokenizer.vocab['[unused0]'], 'EOS': tokenizer.vocab['[unused1]'],
               'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}

    train_loss = abs_loss(model.generator, symbols, model.vocab_size, device, train=True,
                          label_smoothing=args.label_smoothing)

    trainer = build_trainer(args, device_id, model, optim, train_loss)

    trainer.train(train_iter_fct, args.train_steps) 
開發者ID:nlpyang,項目名稱:PreSumm,代碼行數:61,代碼來源:train_abstractive.py


注:本文中的pytorch_transformers.BertTokenizer.from_pretrained方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。