當前位置: 首頁>>代碼示例>>Python>>正文


Python GPT2Tokenizer.from_pretrained方法代碼示例

本文整理匯總了Python中pytorch_pretrained_bert.GPT2Tokenizer.from_pretrained方法的典型用法代碼示例。如果您正苦於以下問題:Python GPT2Tokenizer.from_pretrained方法的具體用法?Python GPT2Tokenizer.from_pretrained怎麽用?Python GPT2Tokenizer.from_pretrained使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pytorch_pretrained_bert.GPT2Tokenizer的用法示例。


在下文中一共展示了GPT2Tokenizer.from_pretrained方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: transform

# 需要導入模塊: from pytorch_pretrained_bert import GPT2Tokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.GPT2Tokenizer import from_pretrained [as 別名]
def transform(self, X):
        # Load pre-trained model tokenizer (vocabulary)
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        # Load pre-trained model (weights)
        model = GPT2Model.from_pretrained('gpt2', cache_dir='tmp/gpt2/')
        model.eval()
        
        output = []
        for idx, row in tqdm(X.iterrows(), total=len(X)):
            # Encode some inputs
            indexed_tokens_1 = tokenizer.encode(row.text)

            # If you have a GPU, put everything on cuda
            # Convert inputs to PyTorch tensors
            tokens_tensor_1 = torch.tensor([indexed_tokens_1])
            tokens_tensor_1 = tokens_tensor_1.to('cuda')
            model.to('cuda')

            # Predict hidden states features for each layer
            with torch.no_grad():
                hidden_states_1, past = model(tokens_tensor_1)
                
            tokens = [tokenizer.decoder[token].replace('Ġ', '') for token in indexed_tokens_1]
            output.append([tokens, hidden_states_1.cpu()[0]])
                
        output = pd.DataFrame(output, columns=['tokens', 'layer_-1'])
        res = []
        for idx, row in X.iterrows():
            res.append(self.get_sample_props(output.loc[idx], **row)[1:])
        
        res = pd.DataFrame(res, columns=['tokens', 'pronoun_offset_token',
                                                'a_offset_token', 'b_offset_token', 'a_span',
                                                'b_span', 'pronoun_token', 'a_tokens', 'b_tokens', 'bert', 'cls'])
        
        cols = set(X.columns).difference(res.columns)
        return {'X': pd.concat([X[cols], res], axis=1)} 
開發者ID:sattree,項目名稱:gap,代碼行數:38,代碼來源:gpt2_features.py

示例2: __init__

# 需要導入模塊: from pytorch_pretrained_bert import GPT2Tokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.GPT2Tokenizer import from_pretrained [as 別名]
def __init__(self, cuda_device=-1):
        super(GPT2Embedder, self).__init__()
        
        self.cuda_device = 'cpu' if cuda_device == -1 else f'cuda:{cuda_device}'
        
        # Load pre-trained model tokenizer (vocabulary)
        self.enc = GPT2Tokenizer.from_pretrained('gpt2')
        # Load pre-trained model (weights)
        self.model = GPT2Model.from_pretrained('gpt2')
        
        self.model.to(self.cuda_device)
        self.model.eval()        # we only use the evaluation mode of the pretrained model
    
        self._bos_id = self.enc.encoder['<|endoftext|>']
        self._bos_past = None 
開發者ID:jzhou316,項目名稱:Unsupervised-Sentence-Summarization,代碼行數:17,代碼來源:gpt2_sequential_embedder.py

示例3: tokenizeGpt2

# 需要導入模塊: from pytorch_pretrained_bert import GPT2Tokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.GPT2Tokenizer import from_pretrained [as 別名]
def tokenizeGpt2(extraction_file_paths, args, min_length=20):
    """Tokenize text using GPT-2's pretrained BPE encoder.

    Saves as compressed npz files that can be loaded using `with np.load('filename.npz') as a: a['arr_0']`.
    Omit files smaller than min_length tokens, which  are likely low quality.
    """
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    EOT = tokenizer.encoder['<|endoftext|>']
    omitted_files = 0
    combined = []
    p = current_process()
    index = p._identity[0] if p._identity else 0
    bar = tqdm.tqdm(extraction_file_paths, position=index, desc=f'proc {index}')
    for extraction_file_path in bar:
        _, filename = os.path.split(extraction_file_path)
        text_file = os.path.join(
            args.output_dir, filename.replace('.txt', '.tokenized.npz'))
        with io.open(extraction_file_path, 'r', encoding='utf-8') as fi:
            # Suppress warnings about length.
            with open(os.devnull, "w") as f, contextlib.redirect_stderr(f):
                # Safe to concat by adding EOT.
                out = tokenizer.encode(fi.read()) + [EOT]
            if len(out) < min_length:
                omitted_files += 1
                continue
            combined += out
        if len(combined) > args.combine:
            np.savez_compressed(text_file, combined)
            combined = []
    # Save the rest.
    if combined:
        np.savez_compressed(text_file, combined)

    return omitted_files, bar.total 
開發者ID:jcpeterson,項目名稱:openwebtext,代碼行數:36,代碼來源:tokenize_text.py

示例4: run_model

# 需要導入模塊: from pytorch_pretrained_bert import GPT2Tokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.GPT2Tokenizer import from_pretrained [as 別名]
def run_model():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_name_or_path', type=str, default='gpt2', help='pretrained model name or path to local checkpoint')
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--nsamples", type=int, default=1)
    parser.add_argument("--batch_size", type=int, default=-1)
    parser.add_argument("--length", type=int, default=-1)
    parser.add_argument("--temperature", type=int, default=1)
    parser.add_argument("--top_k", type=int, default=0)
    parser.add_argument('--unconditional', action='store_true', help='If true, unconditional generation.')
    args = parser.parse_args()
    print(args)

    if args.batch_size == -1:
        args.batch_size = 1
    assert args.nsamples % args.batch_size == 0

    np.random.seed(args.seed)
    torch.random.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    enc = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
    model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
    model.to(device)
    model.eval()

    if args.length == -1:
        args.length = model.config.n_ctx // 2
    elif args.length > model.config.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)

    while not args.unconditional:
        if not args.unconditional:
            raw_text = input("Model prompt >>> ")
            while not raw_text:
                print('Prompt should not be empty!')
                raw_text = input("Model prompt >>> ")
            context_tokens = enc.encode(raw_text)
        generated = 0
        for _ in range(args.nsamples // args.batch_size):
            out = sample_sequence(
                model=model, length=args.length,
                context=context_tokens if not args.unconditional else None,
                start_token=enc.encoder['<|endoftext|>'] if args.unconditional else None,
                batch_size=args.batch_size,
                temperature=args.temperature, top_k=args.top_k, device=device
            )
            out = out[:, len(context_tokens):].tolist()
            for i in range(args.batch_size):
                generated += 1
                text = enc.decode(out[i])
                print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
                print(text)
        print("=" * 80) 
開發者ID:zphang,項目名稱:bert_on_stilts,代碼行數:57,代碼來源:run_gpt2.py


注:本文中的pytorch_pretrained_bert.GPT2Tokenizer.from_pretrained方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。