當前位置: 首頁>>代碼示例>>Python>>正文


Python BertTokenizer.from_pretrained方法代碼示例

本文整理匯總了Python中pytorch_pretrained_bert.BertTokenizer.from_pretrained方法的典型用法代碼示例。如果您正苦於以下問題:Python BertTokenizer.from_pretrained方法的具體用法?Python BertTokenizer.from_pretrained怎麽用?Python BertTokenizer.from_pretrained使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pytorch_pretrained_bert.BertTokenizer的用法示例。


在下文中一共展示了BertTokenizer.from_pretrained方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_single_embedding

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def _get_single_embedding(model, text, device):
    """Get the bert embedding for a single sentence
    :param text: The current sentence
    :type text: str
    :param device: A pytorch device
    :type device: torch.device
    :param model: a pytorch model
    :type model: torch.nn
    :return: A bert embedding of the single sentence
    :rtype: torch.embedding
    """
    tokenizer = BertTokenizer.from_pretrained(Language.ENGLISH)
    words = [BertTokens.CLS] + tokenizer.tokenize(text) + [BertTokens.SEP]
    tokenized_ids = tokenizer.convert_tokens_to_ids(words)
    token_tensor = torch.tensor([tokenized_ids], device=device)
    embedding = model.bert.embeddings(token_tensor)[0]
    return embedding, words 
開發者ID:interpretml,項目名稱:interpret-text,代碼行數:19,代碼來源:utils_unified.py

示例2: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, embed_dim: int, hidden_dim: int, num_embeddings: int, num_max_positions: int, num_heads: int, num_layers: int, dropout: float,
                 causal: bool):
        super().__init__()
        self.causal: bool = causal
        self.tokens_embeddings: torch.nn.Embedding = torch.nn.Embedding(num_embeddings, embed_dim)
        self.position_embeddings: torch.nn.Embedding = torch.nn.Embedding(num_max_positions, embed_dim)
        self.dropout: torch.nn.Dropout = torch.nn.Dropout(dropout)

        self.attentions, self.feed_forwards = torch.nn.ModuleList(), torch.nn.ModuleList()
        self.layer_norms_1, self.layer_norms_2 = torch.nn.ModuleList(), torch.nn.ModuleList()
        for _ in range(num_layers):
            self.attentions.append(torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout))
            self.feed_forwards.append(torch.nn.Sequential(torch.nn.Linear(embed_dim, hidden_dim),
                                                          torch.nn.ReLU(),
                                                          torch.nn.Linear(hidden_dim, embed_dim)))
            self.layer_norms_1.append(torch.nn.LayerNorm(embed_dim, eps=1e-12))
            self.layer_norms_2.append(torch.nn.LayerNorm(embed_dim, eps=1e-12))

        self.attn_mask = None
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased', do_lower_case=False) 
開發者ID:feedly,項目名稱:transfer-nlp,代碼行數:22,代碼來源:model.py

示例3: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, data_dir, bert_model_dir, params, token_pad_idx=0):
        self.data_dir = data_dir
        self.batch_size = params.batch_size
        self.max_len = params.max_len
        self.device = params.device
        self.seed = params.seed
        self.token_pad_idx = 0

        tags = self.load_tags()
        self.tag2idx = {tag: idx for idx, tag in enumerate(tags)}
        self.idx2tag = {idx: tag for idx, tag in enumerate(tags)}
        params.tag2idx = self.tag2idx
        params.idx2tag = self.idx2tag
        self.tag_pad_idx = self.tag2idx['O']

        self.tokenizer = BertTokenizer.from_pretrained(bert_model_dir, do_lower_case=True) 
開發者ID:lemonhu,項目名稱:NER-BERT-pytorch,代碼行數:18,代碼來源:data_loader.py

示例4: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, opt):
        super().__init__(opt)
        # initialize from vocab path
        download(opt['datapath'])
        vocab_path = os.path.join(opt['datapath'], 'models', 'bert_models', VOCAB_PATH)
        self.tokenizer = BertTokenizer.from_pretrained(vocab_path)

        self.start_token = '[CLS]'
        self.end_token = '[SEP]'
        self.null_token = '[PAD]'
        self.start_idx = self.tokenizer.convert_tokens_to_ids(['[CLS]'])[
            0
        ]  # should be 101
        self.end_idx = self.tokenizer.convert_tokens_to_ids(['[SEP]'])[
            0
        ]  # should be 102
        self.pad_idx = self.tokenizer.convert_tokens_to_ids(['[PAD]'])[0]  # should be 0
        # set tok2ind for special tokens
        self.tok2ind[self.start_token] = self.start_idx
        self.tok2ind[self.end_token] = self.end_idx
        self.tok2ind[self.null_token] = self.pad_idx
        # set ind2tok for special tokens
        self.ind2tok[self.start_idx] = self.start_token
        self.ind2tok[self.end_idx] = self.end_token
        self.ind2tok[self.pad_idx] = self.null_token 
開發者ID:facebookresearch,項目名稱:ParlAI,代碼行數:27,代碼來源:bert_dictionary.py

示例5: inspect_sampler_squad_examples

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def inspect_sampler_squad_examples():
    bert_model_name = "bert-base-uncased"
    bert_pretrain_path = config.PRO_ROOT / '.pytorch_pretrained_bert'
    do_lower_case = True
    max_pre_context_length = 315
    max_query_length = 64
    doc_stride = 128
    debug = True

    tokenizer = BertTokenizer.from_pretrained(bert_model_name, do_lower_case=do_lower_case,
                                              cache_dir=bert_pretrain_path)

    squad_train_v2 = common.load_json(config.SQUAD_TRAIN_2_0)

    train_eitem_list = preprocessing_squad(squad_train_v2)
    train_fitem_dict, train_fitem_list = eitems_to_fitems(train_eitem_list, tokenizer, is_training=False,
                                                          max_tokens_for_doc=max_pre_context_length,
                                                          doc_stride=doc_stride,
                                                          debug=debug)
    print(len(train_fitem_list)) 
開發者ID:easonnie,項目名稱:semanticRetrievalMRS,代碼行數:22,代碼來源:qa_sampler.py

示例6: _load_model

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def _load_model(self) -> None:
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() and not self.no_cuda else "cpu"
        )
        self.n_gpu = torch.cuda.device_count()

        # Load a trained model and vocabulary that you have fine-tuned
        self.model = BertForSequenceClassification.from_pretrained(
            self.model_dir, num_labels=self.num_labels
        )
        self.tokenizer = BertTokenizer.from_pretrained(
            self.model_dir, do_lower_case=self.do_lower_case
        )
        self.model.to(self.device) 
開發者ID:microsoft,項目名稱:botbuilder-python,代碼行數:16,代碼來源:bert_model_runtime.py

示例7: eval_semantic_sim_score

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def eval_semantic_sim_score(instances: List[CFRInstance], bert_model_type="bert-base-uncased"):

    tokenizer = BertTokenizer.from_pretrained(bert_model_type)
    model = BertModel.from_pretrained(bert_model_type)
    model.eval()
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    model.to(device)

    drift_similarities = []

    for instance in instances:
        clean_original_story = _clean_text(instance.original_context + ' ' + instance.original_ending)
        predicted_ending = _clean_text(instance.cf_context + ' ' + instance.predicted_ending)

        original_story_emb = _bert_embed_sentence(clean_original_story, model, tokenizer)
        predicted_ending_emb = _bert_embed_sentence(predicted_ending, model, tokenizer)

        all_sims = []
        for gold_cf in instance.gold_cf_endings:
            clean_gold_cf = _clean_text(instance.cf_context + ' ' + gold_cf)
            gold_cf_emb = _bert_embed_sentence(clean_gold_cf, model, tokenizer)

            all_sims.append(drift_similarity(original_story_emb, predicted_ending_emb, gold_cf_emb))

        drift_similarities.append(np.max(all_sims))

    return {
        "drift_similarity": np.mean(drift_similarities),
        "drift_similarity_by_instance": [float(f) for f in  drift_similarities]
    } 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:32,代碼來源:evaluate.py

示例8: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, data_file: str, bert_version: str):
        super().__init__(data_file=data_file)
        self.tokenizer = BertTokenizer.from_pretrained(bert_version)
        df = pd.read_csv(data_file)
        self.target_vocab = Vocabulary(add_unk=False)
        self.target_vocab.add_many(set(df.category)) 
開發者ID:feedly,項目名稱:transfer-nlp,代碼行數:8,代碼來源:bert.py

示例9: bert_model

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def bert_model(pretrained_model_name_or_path: str = 'bert-base-uncased', num_labels: int = 4):
    return BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path=pretrained_model_name_or_path, num_labels=num_labels) 
開發者ID:feedly,項目名稱:transfer-nlp,代碼行數:4,代碼來源:bert.py

示例10: get_bert

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def get_bert(bert_model, bert_do_lower_case):
    # Avoid a hard dependency on BERT by only importing it if it's being used
    from pytorch_pretrained_bert import BertTokenizer, BertModel
    if bert_model.endswith('.tar.gz'):
        tokenizer = BertTokenizer.from_pretrained(bert_model.replace('.tar.gz', '-vocab.txt'), do_lower_case=bert_do_lower_case)
    else:
        tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=bert_do_lower_case)
    bert = BertModel.from_pretrained(bert_model)
    return tokenizer, bert

# %% 
開發者ID:nikitakit,項目名稱:self-attentive-parser,代碼行數:13,代碼來源:parse_nk.py

示例11: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, bert_type: str, do_basic_tokenize=True):
        super(TokenizerForBert, self).__init__()
        self.bert_type = bert_type
        self.do_basic_tokenize = do_basic_tokenize
        self.msg_printer = wasabi.Printer()
        self.allowed_bert_types = [
            "bert-base-uncased",
            "bert-large-uncased",
            "bert-base-cased",
            "bert-large-cased",
            "scibert-base-cased",
            "scibert-sci-cased",
            "scibert-base-uncased",
            "scibert-sci-uncased",
        ]
        self.scibert_foldername_mapping = {
            "scibert-base-cased": "scibert_basevocab_cased",
            "scibert-sci-cased": "scibert_scivocab_cased",
            "scibert-base-uncased": "scibert_basevocab_uncased",
            "scibert-sci-uncased": "scibert_scivocab_uncased",
        }
        assert bert_type in self.allowed_bert_types, self.msg_printer.fail(
            f"You passed {bert_type} for attribute bert_type."
            f"The allowed types are {self.allowed_bert_types}"
        )
        self.vocab_type_or_filename = None
        if "scibert" in self.bert_type:
            foldername = self.scibert_foldername_mapping[self.bert_type]
            self.vocab_type_or_filename = os.path.join(
                EMBEDDING_CACHE_DIR, foldername, "vocab.txt"
            )
        else:
            self.vocab_type_or_filename = self.bert_type

        with self.msg_printer.loading("Loading Bert model"):
            self.tokenizer = BertTokenizer.from_pretrained(
                self.vocab_type_or_filename, do_basic_tokenize=do_basic_tokenize
            ) 
開發者ID:abhinavkashyap,項目名稱:sciwing,代碼行數:40,代碼來源:bert_tokenizer.py

示例12: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, bert_type_name='') -> None:
        super().__init__()
        self.bert_type_name = bert_type_name

        self.bert_tokenizer = BertTokenizer.from_pretrained(self.bert_type_name)

        self.bert_model: BertModel = BertModel.from_pretrained(self.bert_type_name)
        self.bert_model.eval() 
開發者ID:easonnie,項目名稱:combine-FEVER-NSMN,代碼行數:10,代碼來源:bert_servant.py

示例13: load_bert

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def load_bert():
    # Load pre-trained model tokenizer (vocabulary)
    tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
    model = BertModel.from_pretrained('bert-base-cased')
    model.eval()
    model.to(device)
    return tokenizer, model 
開發者ID:allanj,項目名稱:ner_with_dependency,代碼行數:9,代碼來源:prebert.py

示例14: __init__

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def __init__(self, args):
        self.args = args
        self.set_random_seed(random_seed=args.random_seed)

        self.tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                                       do_lower_case=args.do_lower_case)
        if args.debug:
            print("Debugging mode on.")
        self.features_lst = self.get_features(self.args.train_folder, self.args.debug) 
開發者ID:seanie12,項目名稱:mrqa,代碼行數:11,代碼來源:trainer.py

示例15: inspect_upstream_eval_v1

# 需要導入模塊: from pytorch_pretrained_bert import BertTokenizer [as 別名]
# 或者: from pytorch_pretrained_bert.BertTokenizer import from_pretrained [as 別名]
def inspect_upstream_eval_v1():
    bert_model_name = "bert-base-uncased"
    bert_pretrain_path = config.PRO_ROOT / '.pytorch_pretrained_bert'
    do_lower_case = True

    max_pre_context_length = 315
    max_query_length = 64
    doc_stride = 128

    is_training = True
    debug_mode = True

    d_list = common.load_jsonl(config.OPEN_SQUAD_DEV_GT)
    in_file_name = config.PRO_ROOT / 'saved_models/05-12-08:44:38_mtr_open_qa_p_level_(num_train_epochs:3)/i(2000)|e(2)|squad|top10(0.6909176915799432)|top20(0.7103122043519394)|seed(12)_eval_results.jsonl'
    cur_eval_results_list = common.load_jsonl(in_file_name)
    top_k = 10
    filter_value = 0.1
    match_type = 'string'
    tokenizer = BertTokenizer.from_pretrained(bert_model_name, do_lower_case=do_lower_case,
                                              cache_dir=bert_pretrain_path)

    fitems_dict, read_fitems_list, _ = get_open_qa_item_with_upstream_paragraphs(d_list, cur_eval_results_list, is_training,
                                                                                 tokenizer, max_pre_context_length, max_query_length, doc_stride,
                                                                                 debug_mode, top_k, filter_value, match_type)
    print(len(read_fitems_list))
    print(len(fitems_dict)) 
開發者ID:easonnie,項目名稱:semanticRetrievalMRS,代碼行數:28,代碼來源:qa_sampler.py


注:本文中的pytorch_pretrained_bert.BertTokenizer.from_pretrained方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。