當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.pandas_udf方法代碼示例

本文整理匯總了Python中pyspark.sql.functions.pandas_udf方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.pandas_udf方法的具體用法?Python functions.pandas_udf怎麽用?Python functions.pandas_udf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.sql.functions的用法示例。


在下文中一共展示了functions.pandas_udf方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _cumprod

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def _cumprod(self, skipna, part_cols=()):
        from pyspark.sql.functions import pandas_udf

        def cumprod(scol):
            @pandas_udf(returnType=self.spark.data_type)
            def negative_check(s):
                assert len(s) == 0 or ((s > 0) | (s.isnull())).all(), (
                    "values should be bigger than 0: %s" % s
                )
                return s

            return F.sum(F.log(negative_check(scol)))

        kser = self._cum(cumprod, skipna, part_cols)
        return kser._with_new_scol(F.exp(kser.spark.column)).rename(self.name)

    # ----------------------------------------------------------------------
    # Accessor Methods
    # ---------------------------------------------------------------------- 
開發者ID:databricks,項目名稱:koalas,代碼行數:21,代碼來源:series.py

示例2: _transform_batch

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def _transform_batch(self, func, return_schema):
        from databricks.koalas.series import Series
        from databricks import koalas as ks

        if isinstance(func, np.ufunc):
            f = func
            func = lambda *args, **kwargs: f(*args, **kwargs)

        if return_schema is None:
            # TODO: In this case, it avoids the shortcut for now (but only infers schema)
            #  because it returns a series from a different DataFrame and it has a different
            #  anchor. We should fix this to allow the shortcut or only allow to infer
            #  schema.
            limit = ks.get_option("compute.shortcut_limit")
            pser = self._kser.head(limit)._to_internal_pandas()
            transformed = pser.transform(func)
            kser = Series(transformed)
            spark_return_type = kser.spark.data_type
        else:
            spark_return_type = return_schema

        pudf = pandas_udf(func, returnType=spark_return_type, functionType=PandasUDFType.SCALAR)
        return self._kser._with_new_scol(scol=pudf(self._kser.spark.column)).rename(self._kser.name) 
開發者ID:databricks,項目名稱:koalas,代碼行數:25,代碼來源:accessors.py

示例3: create_udf_node

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def create_udf_node(self, udf_func):
        """Create a new UDF node type and adds a corresponding compile rule.

        Parameters
        ----------
        udf_func : function
            Should be the result of calling pyspark.sql.functions.udf or
            pyspark.sql.functions.pandas_udf on the user-specified func

        Returns
        -------
        result : type
            A new SparkUDFNode or SparkUDAFNode subclass
        """
        name = udf_func.__name__
        definition = next(_udf_name_cache[name])
        external_name = '{}_{:d}'.format(name, definition)

        UDFNode = type(
            external_name,
            (self.base_class,),
            {
                'signature': sig.TypeSignature.from_dtypes(self.input_type),
                'return_type': self.output_type,
            },
        )

        # Add udf_func as a property. If added to the class namespace dict, it
        # would be incorrectly used as a bound method, i.e.
        # udf_func(t.column) would be a call to bound method func with t.column
        # interpreted as self.
        UDFNode.udf_func = property(lambda self, udf_func=udf_func: udf_func)

        @compiles(UDFNode)
        def compiles_udf_node(t, expr):
            return '{}({})'.format(
                UDFNode.__name__, ', '.join(map(t.translate, expr.op().args))
            )

        return UDFNode 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:42,代碼來源:udf.py

示例4: pyspark_udf

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def pyspark_udf(self, func):
        return f.pandas_udf(func, self.spark_output_type, self.pandas_udf_type) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:4,代碼來源:udf.py

示例5: compile_strftime

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def compile_strftime(t, expr, scope, **kwargs):
    op = expr.op()
    format_str = op.format_str.op().value

    @pandas_udf('string', PandasUDFType.SCALAR)
    def strftime(timestamps):
        return timestamps.dt.strftime(format_str)

    src_column = t.translate(op.arg, scope)
    return strftime(src_column) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:12,代碼來源:compiler.py

示例6: compile_day_of_week_index

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def compile_day_of_week_index(t, expr, scope, **kwargs):
    op = expr.op()

    @pandas_udf('short', PandasUDFType.SCALAR)
    def day_of_week(s):
        return s.dt.dayofweek

    src_column = t.translate(op.arg, scope)
    return day_of_week(src_column.cast('timestamp')) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:11,代碼來源:compiler.py

示例7: compiles_day_of_week_name

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def compiles_day_of_week_name(t, expr, scope, **kwargs):
    op = expr.op()

    @pandas_udf('string', PandasUDFType.SCALAR)
    def day_name(s):
        return s.dt.day_name()

    src_column = t.translate(op.arg, scope)
    return day_name(src_column.cast('timestamp')) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:11,代碼來源:compiler.py

示例8: test_array_field

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def test_array_field(spark_test_ctx):
    @pandas_udf('array<float>')
    def gen_array(v):
        return v.map(lambda x: np.random.rand(10))
    df1 = spark_test_ctx.spark.range(10).withColumn('v', gen_array('id')).repartition(2)
    cv1 = make_spark_converter(df1)
    # we can auto infer one-dim array shape
    with cv1.make_tf_dataset(batch_size=4, num_epochs=1) as dataset:
        tf_iter = dataset.make_one_shot_iterator()
        next_op = tf_iter.get_next()
        with tf.Session() as sess:
            batch1 = sess.run(next_op)
        assert batch1.v.shape == (4, 10) 
開發者ID:uber,項目名稱:petastorm,代碼行數:15,代碼來源:test_spark_dataset_converter.py

示例9: _spark_group_map_apply

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import pandas_udf [as 別名]
def _spark_group_map_apply(kdf, func, groupkeys_scols, return_schema, retain_index):
        output_func = GroupBy._make_pandas_df_builder_func(kdf, func, return_schema, retain_index)
        grouped_map_func = pandas_udf(return_schema, PandasUDFType.GROUPED_MAP)(output_func)
        sdf = kdf._internal.spark_frame.drop(*HIDDEN_COLUMNS)
        return sdf.groupby(*groupkeys_scols).apply(grouped_map_func) 
開發者ID:databricks,項目名稱:koalas,代碼行數:7,代碼來源:groupby.py


注:本文中的pyspark.sql.functions.pandas_udf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。