當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.min方法代碼示例

本文整理匯總了Python中pyspark.sql.functions.min方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.min方法的具體用法?Python functions.min怎麽用?Python functions.min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.sql.functions的用法示例。


在下文中一共展示了functions.min方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: is_multi_agg_with_relabel

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def is_multi_agg_with_relabel(**kwargs):
    """
    Check whether the kwargs pass to .agg look like multi-agg with relabling.

    Parameters
    ----------
    **kwargs : dict

    Returns
    -------
    bool

    Examples
    --------
    >>> is_multi_agg_with_relabel(a='max')
    False
    >>> is_multi_agg_with_relabel(a_max=('a', 'max'),
    ...                            a_min=('a', 'min'))
    True
    >>> is_multi_agg_with_relabel()
    False
    """
    if not kwargs:
        return False
    return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) 
開發者ID:databricks,項目名稱:koalas,代碼行數:27,代碼來源:groupby.py

示例2: get_sampled

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def get_sampled(self, data):
        from databricks.koalas import DataFrame, Series

        fraction = get_option("plotting.sample_ratio")
        if fraction is None:
            fraction = 1 / (len(data) / get_option("plotting.max_rows"))
            fraction = min(1.0, fraction)
        self.fraction = fraction

        if isinstance(data, (DataFrame, Series)):
            if isinstance(data, Series):
                data = data.to_frame()
            sampled = data._internal.resolved_copy.spark_frame.sample(fraction=self.fraction)
            return DataFrame(data._internal.with_new_sdf(sampled)).to_pandas()
        else:
            raise ValueError("Only DataFrame and Series are supported for plotting.") 
開發者ID:databricks,項目名稱:koalas,代碼行數:18,代碼來源:plot.py

示例3: stats

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def stats(self, columns):
        """Compute the stats for each column provided in columns.
        Parameters
        ----------
        columns : list of str, contains all columns to compute stats on.
        """
        assert (not isinstance(columns, basestring)), "columns should be a " \
                                                      "list of strs,  " \
                                                      "not a str!"
        assert isinstance(columns, list), "columns should be a list!"

        from pyspark.sql import functions as F
        functions = [F.min, F.max, F.avg, F.count]
        aggs = list(
            self._flatmap(lambda column: map(lambda f: f(column), functions),
                          columns))
        return PStats(self.from_schema_rdd(self._schema_rdd.agg(*aggs))) 
開發者ID:sparklingpandas,項目名稱:sparklingpandas,代碼行數:19,代碼來源:dataframe.py

示例4: min

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def min(self):
        """Compute the min for each group."""
        if self._can_use_new_school():
            self._prep_spark_sql_groupby()
            import pyspark.sql.functions as func
            return self._use_aggregation(func.min)
        self._prep_pandas_groupby()
        myargs = self._myargs
        mykwargs = self._mykwargs

        def create_combiner(x):
            return x.groupby(*myargs, **mykwargs).min()

        def merge_value(x, y):
            return x.append(create_combiner(y)).min()

        def merge_combiner(x, y):
            return x.append(y).min(level=0)

        rddOfMin = self._sortIfNeeded(self._distributedRDD.combineByKey(
            create_combiner,
            merge_value,
            merge_combiner)).values()
        return DataFrame.fromDataFrameRDD(rddOfMin, self.sql_ctx) 
開發者ID:sparklingpandas,項目名稱:sparklingpandas,代碼行數:26,代碼來源:groupby.py

示例5: compile_all

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def compile_all(t, expr, scope, context=None, **kwargs):
    return compile_aggregator(t, expr, scope, F.min, context, **kwargs) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:4,代碼來源:compiler.py

示例6: compile_notall

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def compile_notall(t, expr, scope, *, context=None, window=None, **kwargs):
    # See comments for opts.NotAny for reasoning for the if/else
    if context is None:

        def fn(col):
            return ~(F.min(col))

        return compile_aggregator(t, expr, scope, fn, context, **kwargs)
    else:
        return ~compile_all(
            t, expr, scope, context=context, window=window, **kwargs
        ) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:14,代碼來源:compiler.py

示例7: compile_min

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def compile_min(t, expr, scope, context=None, **kwargs):
    return compile_aggregator(t, expr, scope, F.min, context, **kwargs) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:4,代碼來源:compiler.py

示例8: min

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def min(self):
        def min(scol):
            return F.when(
                F.row_number().over(self._unbounded_window) >= self._min_periods,
                F.min(scol).over(self._window),
            ).otherwise(F.lit(None))

        return self._apply_as_series_or_frame(min) 
開發者ID:databricks,項目名稱:koalas,代碼行數:10,代碼來源:window.py

示例9: min

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def min(self):
        """
        Return the minimum value of the Index.

        Returns
        -------
        scalar
            Minimum value.

        See Also
        --------
        Index.max : Return the maximum value of the object.
        Series.min : Return the minimum value in a Series.
        DataFrame.min : Return the minimum values in a DataFrame.

        Examples
        --------
        >>> idx = ks.Index([3, 2, 1])
        >>> idx.min()
        1

        >>> idx = ks.Index(['c', 'b', 'a'])
        >>> idx.min()
        'a'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)])
        >>> idx.min()
        ('a', 'x', 1)
        """
        sdf = self._internal.spark_frame
        min_row = sdf.select(F.min(F.struct(self._internal.index_spark_columns))).head()
        result = tuple(min_row[0])

        return result if len(result) > 1 else result[0] 
開發者ID:databricks,項目名稱:koalas,代碼行數:38,代碼來源:indexes.py

示例10: max

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def max(self):
        """
        Return the maximum value of the Index.

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)])
        >>> idx.max()
        ('b', 'y', 2)
        """
        sdf = self._internal.spark_frame
        max_row = sdf.select(F.max(F.struct(self._internal.index_spark_columns))).head()
        result = tuple(max_row[0])

        return result if len(result) > 1 else result[0] 
開發者ID:databricks,項目名稱:koalas,代碼行數:38,代碼來源:indexes.py

示例11: min

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def min(self):
        """
        Compute min of group values.

        See Also
        --------
        databricks.koalas.Series.groupby
        databricks.koalas.DataFrame.groupby
        """
        return self._reduce_for_stat_function(F.min, only_numeric=False)

    # TODO: sync the doc and implement `ddof`. 
開發者ID:databricks,項目名稱:koalas,代碼行數:14,代碼來源:groupby.py

示例12: _calc_whiskers

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def _calc_whiskers(colname, outliers):
        # Computes min and max values of non-outliers - the whiskers
        minmax = (
            outliers.filter("not __{}_outlier".format(colname))
            .agg(F.min(colname).alias("min"), F.max(colname).alias("max"))
            .toPandas()
        )
        return minmax.iloc[0][["min", "max"]].values 
開發者ID:databricks,項目名稱:koalas,代碼行數:10,代碼來源:plot.py

示例13: _get_bins

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def _get_bins(sdf, bins):
        # 'data' is a Spark DataFrame that selects all columns.
        if len(sdf.columns) > 1:
            min_col = F.least(*map(F.min, sdf))
            max_col = F.greatest(*map(F.max, sdf))
        else:
            min_col = F.min(sdf.columns[-1])
            max_col = F.max(sdf.columns[-1])
        boundaries = sdf.select(min_col, max_col).first()

        # divides the boundaries into bins
        if boundaries[0] == boundaries[1]:
            boundaries = (boundaries[0] - 0.5, boundaries[1] + 0.5)

        return np.linspace(boundaries[0], boundaries[1], bins + 1) 
開發者ID:databricks,項目名稱:koalas,代碼行數:17,代碼來源:plot.py

示例14: _reduce_for_stat_function

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def _reduce_for_stat_function(self, sfun, name, axis=None, numeric_only=None):
        """
        Applies sfun to the column and returns a scalar

        Parameters
        ----------
        sfun : the stats function to be used for aggregation
        name : original pandas API name.
        axis : used only for sanity check because series only support index axis.
        numeric_only : not used by this implementation, but passed down by stats functions
        """
        from inspect import signature

        axis = validate_axis(axis)
        if axis == 1:
            raise ValueError("Series does not support columns axis.")
        num_args = len(signature(sfun).parameters)
        scol = self.spark.column
        spark_type = self.spark.data_type
        if isinstance(spark_type, BooleanType) and sfun.__name__ not in ("min", "max"):
            # Stat functions cannot be used with boolean values by default
            # Thus, cast to integer (true to 1 and false to 0)
            # Exclude the min and max methods though since those work with booleans
            scol = scol.cast("integer")
        if num_args == 1:
            # Only pass in the column if sfun accepts only one arg
            scol = sfun(scol)
        else:  # must be 2
            assert num_args == 2
            # Pass in both the column and its data type if sfun accepts two args
            scol = sfun(scol, spark_type)
        return unpack_scalar(self._internal.spark_frame.select(scol)) 
開發者ID:databricks,項目名稱:koalas,代碼行數:34,代碼來源:series.py

示例15: min

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import min [as 別名]
def min(self):
        return self.from_spark_rdd(self._schema_rdd.min(), self.sql_ctx) 
開發者ID:sparklingpandas,項目名稱:sparklingpandas,代碼行數:4,代碼來源:dataframe.py


注:本文中的pyspark.sql.functions.min方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。