當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.lit方法代碼示例

本文整理匯總了Python中pyspark.sql.functions.lit方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.lit方法的具體用法?Python functions.lit怎麽用?Python functions.lit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.sql.functions的用法示例。


在下文中一共展示了functions.lit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: write_partition

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def write_partition(
    df: DataFrame, output_table: str, output_path: str,
    partition_spec: Mapping[str, str], mode: str = 'overwrite'
) -> None:
    """Write dataframe to disk as parquet and add to hive metastore"""
    for k, v in partition_spec.items():
        df = df.withColumn(k, F.lit(v))

    expect_schema = df.sql_ctx.read.table(output_table).schema
    errors = _verify_schema_equality(expect_schema, df.schema)
    if errors:
        raise Exception('Output table has incompatible schema: {}'.format(
            ', '.join(errors)))
    df.write.mode(mode).parquet(output_path)
    df.sql_ctx.sparkSession.sql(_add_partition_ql(
        output_table, output_path, partition_spec)).collect()


# Generic helpers for composing transformations 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:21,代碼來源:transform.py

示例2: explode_features

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def explode_features(df, features=None):
    """Convert feature vector into individual columns

    Parameters
    ----------
    df : pyspark.sql.DataFrame
    features : list of str or None

    Returns
    -------
    pyspark.sql.DataFrame
    """
    if features is None:
        features = df.schema['features'].metadata['features']

    def extract_feature(features, idx):
        return float(features[idx])
    extract_feature_udf = F.udf(extract_feature, pyspark.sql.types.FloatType())
    cols = [extract_feature_udf('features', F.lit(idx)).alias(name) for idx, name in enumerate(features)]
    return df.select('*', *cols) 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:22,代碼來源:feature_engineering.py

示例3: test_split

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def test_split(spark):
    df = (
        spark
        .range(1, 100 * 100)
        # convert into 100 "queries" with 100 values each. We need a
        # sufficiently large number of queries, or the split wont have
        # enough data for partitions to even out.
        .select(F.lit('foowiki').alias('wikiid'),
                (F.col('id')/100).cast('int').alias('norm_query_id')))

    with_folds = mjolnir.training.tuning.split(df, (0.8, 0.2)).collect()

    fold_0 = [row for row in with_folds if row.fold == 0]
    fold_1 = [row for row in with_folds if row.fold == 1]

    # Check the folds are pretty close to requested
    total_len = float(len(with_folds))
    assert 0.8 == pytest.approx(len(fold_0) / total_len, abs=0.015)
    assert 0.2 == pytest.approx(len(fold_1) / total_len, abs=0.015)

    # Check each norm query is only found on one side of the split
    queries_in_0 = set([row.norm_query_id for row in fold_0])
    queries_in_1 = set([row.norm_query_id for row in fold_1])
    assert len(queries_in_0.intersection(queries_in_1)) == 0 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:26,代碼來源:test_tuning.py

示例4: compile_literal

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def compile_literal(t, expr, scope, raw=False, **kwargs):
    """ If raw is True, don't wrap the result with F.lit()
    """
    value = expr.op().value

    if raw:
        return value

    if isinstance(value, collections.abc.Set):
        # Don't wrap set with F.lit
        if isinstance(value, frozenset):
            # Spark doens't like frozenset
            return set(value)
        else:
            return value
    elif isinstance(value, list):
        return F.array(*[F.lit(v) for v in value])
    else:
        return F.lit(expr.op().value) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:21,代碼來源:compiler.py

示例5: main

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def main(data_path, output_path):
    # Read data
    logging.info(f"Reading data from {data_path}")
    sc = SparkContext()
    sql = SQLContext(sc)
    data = sql.read.parquet(data_path)

    # Build label matrix
    logging.info("Applying LFs")
    lfs = [article_mentions_person, body_contains_fortune, person_in_db]
    applier = SparkLFApplier(lfs)
    L = applier.apply(data.rdd)

    # Train label model
    logging.info("Training label model")
    label_model = LabelModel(cardinality=2)
    label_model.fit(L)

    # Generate training labels
    logging.info("Generating probabilistic labels")
    y_prob = label_model.predict_proba(L)[:, 1]
    y_prob_sql_array = F.array([F.lit(y) for y in y_prob])
    data_labeled = data.withColumn("y_prob", y_prob_sql_array)
    data_labeled.write.mode("overwrite").parquet(output_path)
    logging.info(f"Labels saved to {output_path}") 
開發者ID:snorkel-team,項目名稱:snorkel-tutorials,代碼行數:27,代碼來源:drybell_spark.py

示例6: _select_rows_by_iterable

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def _select_rows_by_iterable(
        self, rows_sel: Iterable
    ) -> Tuple[Optional[spark.Column], Optional[int], Optional[int]]:
        rows_sel = list(rows_sel)
        if len(rows_sel) == 0:
            return F.lit(False), None, None
        elif len(self._internal.index_spark_column_names) == 1:
            index_column = self._kdf_or_kser.index.to_series()
            index_data_type = index_column.spark.data_type
            if len(rows_sel) == 1:
                return (
                    index_column.spark.column == F.lit(rows_sel[0]).cast(index_data_type),
                    None,
                    None,
                )
            else:
                return (
                    index_column.spark.column.isin(
                        [F.lit(r).cast(index_data_type) for r in rows_sel]
                    ),
                    None,
                    None,
                )
        else:
            raise LocIndexer._NotImplemented("Cannot select with MultiIndex with Spark.") 
開發者ID:databricks,項目名稱:koalas,代碼行數:27,代碼來源:indexing.py

示例7: _is_monotonic_decreasing

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def _is_monotonic_decreasing(self):
        scol = self.spark.column
        window = Window.orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween(-1, -1)
        prev = F.lag(scol, 1).over(window)

        cond = F.lit(True)
        for field in self.spark.data_type[::-1]:
            left = scol.getField(field.name)
            right = prev.getField(field.name)
            compare = MultiIndex._comparator_for_monotonic_decreasing(field.dataType)
            cond = F.when(left.eqNullSafe(right), cond).otherwise(
                compare(left, right, spark.Column.__lt__)
            )

        cond = prev.isNull() | cond

        internal = InternalFrame(
            spark_frame=self._internal.spark_frame.select(
                self._internal.index_spark_columns + [cond]
            ),
            index_map=self._internal.index_map,
        )

        return first_series(DataFrame(internal)) 
開發者ID:databricks,項目名稱:koalas,代碼行數:26,代碼來源:indexes.py

示例8: getTopEntities

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def getTopEntities(self, e, targetType = '', maxCount = 20, minScore = 0.0):
    df1 = self.df
    row1 = df1.where(df1.EntityId == e).first()
    self.raiseErrorIfNotFound(row1, e)

    if targetType == '':
      df2 = df1.where(df1.EntityId != e)
    else :
      df2 = df1.where((df1.EntityId != e) & (df1.EntityType == targetType))

    df3 = df2.select(df2.EntityId, df2.EntityType, udfCosineSimilarity(F.lit(row1.Data), df2.Data).alias('Score'))
    return df3.where(df3.Score >= minScore).orderBy(df3.Score.desc()).limit(maxCount)

# COMMAND ----------

# MAGIC %md **PaperSimilarity** class to compute paper recommendations

# COMMAND ----------

#   Parameters:
#     resource: resource stream path
#     container: container name in Azure Storage (AS) account
#     account: Azure Storage (AS) account
#     sas: complete 'Blob service SAS URL' of the shared access signature (sas) for the container
#     key: access key for the container, if sas is specified, key is ignored
#
#   Note:
#     resource does not have header
#     you need to provide value for either sas or key
# 
開發者ID:graph-knowledgegraph,項目名稱:KDD2019-HandsOn-Tutorial,代碼行數:32,代碼來源:TutorialClasses.py

示例9: _getTopEntitiesByEmbedding

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def _getTopEntitiesByEmbedding(self, e, maxCount, minScore):
    df1 = self.df
    paperdf = self.mag.getDataframe('Papers')
    row1 = df1.where(df1.EntityId == e).first()
    df2 = df1.where(df1.EntityId != e)
    df3 = df2.select(df2.EntityId, udfCosineSimilarityN(F.lit(row1.Data), df2.Data).alias('Score'))
    return df3.join(paperdf, df3.EntityId == paperdf.PaperId, 'inner').select(paperdf.PaperId, paperdf.PaperTitle, df3.Score).where((~F.isnan(df3.Score)) & (df3.Score >= minScore)).orderBy(df3.Score.desc()).limit(maxCount) 
開發者ID:graph-knowledgegraph,項目名稱:KDD2019-HandsOn-Tutorial,代碼行數:9,代碼來源:TutorialClasses.py

示例10: read_partition

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def read_partition(
    spark: SparkSession,
    table: str,
    partition_spec: Mapping[str, str],
    schema: Optional[T.StructType] = None,
    direct_parquet_read: bool = False
) -> DataFrame:
    """Read a single partition from a hive table.

    Verifies the partition specification describes a complete partition,
    that the partition exists, and optionally that the table is compatible
    with an expected schema. The partition could still be empty.
    """
    # We don't need to do anything with the result, our goal is to
    # trigger AnalysisException when the arguments are invalid.
    spark.sql(_describe_partition_ql(table, partition_spec)).collect()

    partition_cond = F.lit(True)
    for k, v in partition_spec.items():
        partition_cond &= F.col(k) == v
    df = spark.read.table(table).where(partition_cond)
    # The df we have now has types defined by the hive table, but this downgrades
    # non-standard types like VectorUDT() to it's sql equivalent. Use the first
    # df to find the files, then read them directly.
    if direct_parquet_read:
        input_files = list(df._jdf.inputFiles())  # type: ignore
        input_dirs = set(os.path.dirname(path) for path in input_files)
        if len(input_dirs) != 1:
            raise Exception('Expected single directory containing partition data: [{}]'.format(
                '],['.join(input_files)))
        df = spark.read.parquet(list(input_dirs)[0])
    if schema is not None:
        # TODO: This only allows extra top level columns, anything
        # nested must be exactly the same. Fine for now.
        _verify_schema_compatability(schema, df.schema)
        df = df.select(*(field.name for field in schema))
    # Drop partitioning columns. These are not part of the mjolnir transformations, and
    # are only an implementation detail of putting them on disk and tracking history.
    return df.drop(*partition_spec.keys()) 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:41,代碼來源:transform.py

示例11: at_least_n_distinct

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def at_least_n_distinct(col, limit):
    """Count distinct that works with windows

    The standard distinct count in spark sql can't be applied in
    a window. This implementation allows that to work
    """
    sc = SparkContext._active_spark_context
    j_cols = _to_seq(sc, [_to_java_column(col), _to_java_column(F.lit(limit))])
    jc = sc._jvm.org.wikimedia.search.mjolnir.AtLeastNDistinct().apply(j_cols)
    return Column(jc) 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:12,代碼來源:__init__.py

示例12: compile_sign

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def compile_sign(t, expr, scope, **kwargs):
    op = expr.op()

    src_column = t.translate(op.arg, scope)

    return F.when(src_column == 0, F.lit(0.0)).otherwise(
        F.when(src_column > 0, F.lit(1.0)).otherwise(-1.0)
    ) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:10,代碼來源:compiler.py

示例13: compile_string_find

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def compile_string_find(t, expr, scope, **kwargs):
    op = expr.op()

    @F.udf('long')
    def str_find(s, substr, start, end):
        return s.find(substr, start, end)

    src_column = t.translate(op.arg, scope)
    substr_column = t.translate(op.substr, scope)
    start_column = t.translate(op.start, scope) if op.start else F.lit(None)
    end_column = t.translate(op.end, scope) if op.end else F.lit(None)
    return str_find(src_column, substr_column, start_column, end_column) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:14,代碼來源:compiler.py

示例14: compile_null_literal

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def compile_null_literal(t, expr, scope):
    return F.lit(None) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:4,代碼來源:compiler.py

示例15: compile_null_if

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import lit [as 別名]
def compile_null_if(t, expr, scope, **kwargs):
    op = expr.op()
    col = t.translate(op.arg, scope)
    nullif_col = t.translate(op.null_if_expr, scope)
    return F.when(col == nullif_col, F.lit(None)).otherwise(col) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:7,代碼來源:compiler.py


注:本文中的pyspark.sql.functions.lit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。