當前位置: 首頁>>代碼示例>>Python>>正文


Python functions.collect_list方法代碼示例

本文整理匯總了Python中pyspark.sql.functions.collect_list方法的典型用法代碼示例。如果您正苦於以下問題:Python functions.collect_list方法的具體用法?Python functions.collect_list怎麽用?Python functions.collect_list使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.sql.functions的用法示例。


在下文中一共展示了functions.collect_list方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _calculate_metrics

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def _calculate_metrics(self):
        """Calculate ranking metrics."""
        self._items_for_user_pred = self.rating_pred

        self._items_for_user_true = (
            self.rating_true
            .groupBy(self.col_user)
            .agg(expr("collect_list(" + self.col_item + ") as ground_truth"))
            .select(self.col_user, "ground_truth")
        )

        self._items_for_user_all = self._items_for_user_pred.join(
            self._items_for_user_true, on=self.col_user
        ).drop(self.col_user)

        return RankingMetrics(self._items_for_user_all.rdd) 
開發者ID:Azure-Samples,項目名稱:azure-python-labs,代碼行數:18,代碼來源:spark_evaluation.py

示例2: _ndcg_at

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def _ndcg_at(k, label_col):
    def ndcg_at_k(predicted, actual):
        # TODO: Taking in rn and then re-sorting might not be necessary, but i can't
        # find any real guarantee that they would come in order after a groupBy + collect_list,
        # since they were only ordered within the window function.
        predicted = [row[label_col] for row in sorted(predicted, key=lambda r: r.rn)]
        actual = [row[label_col] for row in sorted(actual, key=lambda r: r.rn)]
        dcg = 0.
        for i, label in enumerate(predicted):
            # This form is used to match EvalNDCG in xgboost
            dcg += ((1 << label) - 1) / math.log(i + 2.0, 2)
        idcg = 0.
        for i, label in enumerate(actual):
            idcg += ((1 << label) - 1) / math.log(i + 2.0, 2)
        if idcg == 0:
            return 0
        else:
            return dcg / idcg
    return F.udf(ndcg_at_k, pyspark.sql.types.DoubleType()) 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:21,代碼來源:metrics.py

示例3: cluster_within_norm_query_groups

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def cluster_within_norm_query_groups(df: DataFrame) -> DataFrame:
    make_groups = F.udf(_make_query_groups, T.ArrayType(T.StructType([
        T.StructField('query', T.StringType(), nullable=False),
        T.StructField('norm_query_group_id', T.IntegerType(), nullable=False),
    ])))
    return (
        df
        .groupBy('wikiid', 'norm_query')
        .agg(F.collect_list(F.struct('query', 'hit_page_ids')).alias('source'))
        .select(
            'wikiid', 'norm_query',
            F.explode(make_groups('source')).alias('group'))
        .select('wikiid', 'norm_query', 'group.query', 'group.norm_query_group_id')) 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:15,代碼來源:norm_query_clustering.py

示例4: with_unique_cluster_id

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def with_unique_cluster_id(df: DataFrame) -> DataFrame:
    return (
        df
        .groupby('wikiid', 'norm_query', 'norm_query_group_id')
        .agg(F.collect_list('query').alias('queries'))
        .select(
            'wikiid', 'queries',
            F.monotonically_increasing_id().alias('cluster_id'))
        .select('wikiid', F.explode('queries').alias('query'), 'cluster_id')) 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:11,代碼來源:norm_query_clustering.py

示例5: compile_group_concat

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def compile_group_concat(t, expr, scope, context=None, **kwargs):
    sep = expr.op().sep.op().value

    def fn(col):
        return F.concat_ws(sep, F.collect_list(col))

    return compile_aggregator(t, expr, scope, fn, context) 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:9,代碼來源:compiler.py

示例6: compile_array_collect

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def compile_array_collect(t, expr, scope, **kwargs):
    op = expr.op()

    src_column = t.translate(op.arg, scope)
    return F.collect_list(src_column)


# --------------------------- Null Operations ----------------------------- 
開發者ID:ibis-project,項目名稱:ibis,代碼行數:10,代碼來源:compiler.py

示例7: get_listening_activity

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def get_listening_activity():
    """ Calculate number of listens for each user in time ranges given in the 'time_range' table """
    # Calculate the number of listens in each time range for each user except the time ranges which have zero listens.
    result_without_zero_days = run_query("""
            SELECT listens.user_name
                 , time_range.time_range
                 , count(listens.user_name) as listen_count
              FROM listens
              JOIN time_range
                ON listens.listened_at >= time_range.start
               AND listens.listened_at <= time_range.end
          GROUP BY listens.user_name
                 , time_range.time_range
            """)
    result_without_zero_days.createOrReplaceTempView('result_without_zero_days')

    # Add the time ranges which have zero listens to the previous dataframe
    result = run_query("""
            SELECT dist_user_name.user_name
                 , time_range.time_range
                 , to_unix_timestamp(time_range.start) as from_ts
                 , to_unix_timestamp(time_range.end) as to_ts
                 , ifnull(result_without_zero_days.listen_count, 0) as listen_count
              FROM (SELECT DISTINCT user_name FROM listens) dist_user_name
        CROSS JOIN time_range
         LEFT JOIN result_without_zero_days
                ON result_without_zero_days.user_name = dist_user_name.user_name
               AND result_without_zero_days.time_range = time_range.time_range
            """)

    # Create a table with a list of time ranges and corresponding listen count for each user
    iterator = result \
        .withColumn("listening_activity", struct("from_ts", "to_ts", "listen_count", "time_range")) \
        .groupBy("user_name") \
        .agg(sort_array(collect_list("listening_activity")).alias("listening_activity")) \
        .toLocalIterator()

    return iterator 
開發者ID:metabrainz,項目名稱:listenbrainz-server,代碼行數:40,代碼來源:listening_activity.py

示例8: get_listening_activity_all_time

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def get_listening_activity_all_time() -> Iterator[Optional[UserListeningActivityStatMessage]]:
    """ Calculate the number of listens for an user in each year starting from LAST_FM_FOUNDING_YEAR (2002). """
    current_app.logger.debug("Calculating listening_activity_all_time")

    to_date = get_latest_listen_ts()
    from_date = datetime(LAST_FM_FOUNDING_YEAR, 1, 1)

    result_without_zero_years = None
    for year in range(from_date.year, to_date.year+1):
        year_start = datetime(year, 1, 1)
        year_end = get_year_end(year)
        try:
            _get_listens(year_start, year_end)
        except HDFSException:
            # Skip if no listens present in df
            continue
        year_df = run_query("""
                    SELECT user_name,
                           count(user_name) as listen_count
                      FROM listens
                  GROUP BY user_name
                  """)
        year_df = year_df.withColumn('time_range', lit(str(year))).withColumn(
            'from_ts', lit(year_start.timestamp())).withColumn('to_ts', lit(year_end.timestamp()))
        result_without_zero_years = result_without_zero_years.union(year_df) if result_without_zero_years else year_df

    # Create a table with a list of time ranges and corresponding listen count for each user
    data = result_without_zero_years \
        .withColumn("listening_activity", struct("from_ts", "to_ts", "listen_count", "time_range")) \
        .groupBy("user_name") \
        .agg(sort_array(collect_list("listening_activity")).alias("listening_activity")) \
        .toLocalIterator()

    messages = create_messages(data=data, stats_range='all_time', from_ts=from_date.timestamp(), to_ts=to_date.timestamp())

    current_app.logger.debug("Done!")

    return messages 
開發者ID:metabrainz,項目名稱:listenbrainz-server,代碼行數:40,代碼來源:listening_activity.py

示例9: _get_top_k_items

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def _get_top_k_items(
        dataframe,
        col_user=DEFAULT_USER_COL,
        col_item=DEFAULT_ITEM_COL,
        col_rating=DEFAULT_RATING_COL,
        col_prediction=PREDICTION_COL,
        k=DEFAULT_K
):
    """Get the input customer-item-rating tuple in the format of Spark
    DataFrame, output a Spark DataFrame in the dense format of top k items
    for each user.
    NOTE: if it is implicit rating, just append a column of constants to be ratings.

    Args:
        dataframe (spark.DataFrame): DataFrame of rating data (in the format of
        customerID-itemID-rating tuple).
        col_user (str): column name for user.
        col_item (str): column name for item.
        col_rating (str): column name for rating.
        col_prediction (str): column name for prediction.
        k (int): number of items for each user.

    Return:
        spark.DataFrame: DataFrame of top k items for each user.
    """
    window_spec = Window.partitionBy(col_user).orderBy(col(col_rating).desc())

    # this does not work for rating of the same value.
    items_for_user = (
        dataframe.select(
            col_user,
            col_item,
            col_rating,
            row_number().over(window_spec).alias("rank")
        )
        .where(col("rank") <= k)
        .groupby(col_user)
        .agg(F.collect_list(col_item).alias(col_prediction))
    )

    return items_for_user 
開發者ID:Azure-Samples,項目名稱:azure-python-labs,代碼行數:43,代碼來源:spark_evaluation.py

示例10: _get_relevant_items_by_threshold

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def _get_relevant_items_by_threshold(
        dataframe,
        col_user=DEFAULT_USER_COL,
        col_item=DEFAULT_ITEM_COL,
        col_rating=DEFAULT_RATING_COL,
        col_prediction=PREDICTION_COL,
        threshold=DEFAULT_THRESHOLD
):
    """Get relevant items for each customer in the input rating data.

    Relevant items are defined as those having ratings above certain threshold.
    The threshold is defined as a statistical measure of the ratings for a
    user, e.g., median.

    Args:
        dataframe: Spark DataFrame of customerID-itemID-rating tuples.
        col_user (str): column name for user.
        col_item (str): column name for item.
        col_rating (str): column name for rating.
        col_prediction (str): column name for prediction.
        threshold (float): threshold for determining the relevant recommended items.
            This is used for the case that predicted ratings follow a known
            distribution.

    Return:
        spark.DataFrame: DataFrame of customerID-itemID-rating tuples with only relevant
            items.
    """
    items_for_user = (
        dataframe
        .orderBy(col_rating, ascending=False)
        .where(col_rating + " >= " + str(threshold))
        .select(
            col_user, col_item, col_rating
        )
        .withColumn(col_prediction, F.collect_list(col_item).over(Window.partitionBy(col_user)))
        .select(col_user, col_prediction)
        .dropDuplicates()
    )

    return items_for_user 
開發者ID:Azure-Samples,項目名稱:azure-python-labs,代碼行數:43,代碼來源:spark_evaluation.py

示例11: _get_relevant_items_by_timestamp

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def _get_relevant_items_by_timestamp(
        dataframe,
        col_user=DEFAULT_USER_COL,
        col_item=DEFAULT_ITEM_COL,
        col_rating=DEFAULT_RATING_COL,
        col_timestamp=DEFAULT_TIMESTAMP_COL,
        col_prediction=PREDICTION_COL,
        k=DEFAULT_K
):
    """Get relevant items for each customer defined by timestamp.

    Relevant items are defined as k items that appear mostly recently
    according to timestamps.

    Args:
        dataframe (spark.DataFrame): A Spark DataFrame of customerID-itemID-rating-timeStamp
            tuples.
        col_user (str): column name for user.
        col_item (str): column name for item.
        col_rating (str): column name for rating.
        col_timestamp (str): column name for timestamp.
        col_prediction (str): column name for prediction.
        k: number of relevent items to be filtered by the function.

    Return:
        spark.DataFrame: DataFrame of customerID-itemID-rating tuples with only relevant items.
    """
    window_spec = Window.partitionBy(col_user).orderBy(col(col_timestamp).desc())

    items_for_user = (
        dataframe.select(
            col_user, col_item, col_rating, row_number().over(window_spec).alias("rank")
        )
        .where(col("rank") <= k)
        .withColumn(col_prediction, F.collect_list(col_item).over(Window.partitionBy(col_user)))
        .select(col_user, col_prediction)
        .dropDuplicates([col_user, col_prediction])
    )

    return items_for_user 
開發者ID:Azure-Samples,項目名稱:azure-python-labs,代碼行數:42,代碼來源:spark_evaluation.py

示例12: ndcg

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def ndcg(df, k, label_col='label', position_col='hit_position', wiki_col='wikiid',
         query_cols=['wikiid', 'query', 'session_id']):
    """
    Calculate ndcg@k for the provided dataframe

    Parameters
    ----------
    df : pyspark.sql.DataFrame
        Input dataframe to calculate against
    k : int
        Cutoff for ndcg calculation
    label_col : str
        Column name containing integer label, higher is better, of the hit
    position_col : str
        Column name containing order displayed to user, lowest first, of the hit
    query_cols : list of str
        Column names to group by, which indicate a unique query displayed to a user

    Returns
    -------
    float
        The ndcg@k value, always between 0 and 1
    """
    if wiki_col not in query_cols:
        query_cols = query_cols + [wiki_col]

    # ideal results per labels
    w = Window.partitionBy(*query_cols).orderBy(F.col(label_col).desc())
    topAtK = (
        df
        .select(label_col, *query_cols)
        .withColumn('rn', F.row_number().over(w))
        .where(F.col('rn') <= k)
        .groupBy(*query_cols)
        .agg(F.collect_list(F.struct(label_col, 'rn')).alias('topAtK')))
    # top k results shown to user
    w = Window.partitionBy(*query_cols).orderBy(F.col(position_col).asc())
    predictedTopAtK = (
        df
        .select(label_col, position_col, *query_cols)
        .withColumn('rn', F.row_number().over(w))
        .where(F.col('rn') <= k)
        .groupBy(*query_cols)
        .agg(F.collect_list(F.struct(label_col, 'rn')).alias('predictedTopAtK')))
    return {row[wiki_col]: row.ndcgAtK for row in topAtK
            .join(predictedTopAtK, query_cols, how='inner')
            .select(wiki_col, _ndcg_at(k, label_col)('predictedTopAtK', 'topAtK').alias('ndcgAtK'))
            .groupBy(wiki_col)
            .agg(F.mean('ndcgAtK').alias('ndcgAtK'))
            .collect()} 
開發者ID:wikimedia,項目名稱:search-MjoLniR,代碼行數:52,代碼來源:metrics.py

示例13: get_releases

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def get_releases(table):
    """
    Get release information (release_name, release_mbid etc) for every user
    ordered by listen count (number of times a user has listened to tracks
    which belong to a particular release).

    Args:
        table: name of the temporary table

    Returns:
        iterator (iter): an iterator over result
                {
                    'user1' : [{
                        'release_name': str
                        'release_msid': str,
                        'release_mbid': str,
                        'artist_name': str,
                        'artist_msid': str,
                        'artist_mbids': list(str),
                        'listen_count': int
                    }],
                    'user2' : [{...}],
                }
    """
    result = run_query("""
            SELECT user_name
                 , nullif(release_name, '') as release_name
                 , CASE
                     WHEN release_mbid IS NOT NULL AND release_mbid != '' THEN NULL
                     ELSE nullif(release_msid, '')
                   END as release_msid
                 , nullif(release_mbid, '') as release_mbid
                 , artist_name
                 , CASE
                     WHEN cardinality(artist_mbids) > 0 THEN NULL
                     ELSE nullif(artist_msid, '')
                   END as artist_msid
                 , artist_mbids
                 , count(release_name) as listen_count
              FROM {}
             WHERE release_name IS NOT NULL AND release_name != ''
          GROUP BY user_name
                 , release_name
                 , release_msid
                 , release_mbid
                 , artist_name
                 , artist_msid
                 , artist_mbids
        """.format(table))

    iterator = result \
        .withColumn("releases", struct("listen_count", "release_name", "release_msid", "release_mbid", "artist_name",
                                       "artist_msid", "artist_mbids")) \
        .groupBy("user_name") \
        .agg(sort_array(collect_list("releases"), asc=False).alias("releases")) \
        .toLocalIterator()

    return iterator 
開發者ID:metabrainz,項目名稱:listenbrainz-server,代碼行數:60,代碼來源:release.py

示例14: get_artists

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def get_artists(table):
    """ Get artist information (artist_name, artist_msid etc) for every user
        ordered by listen count

        Args:
            table (str): name of the temporary table.

        Returns:
            iterator (iter): an iterator over result
                    {
                        user1: [{
                            'artist_name': str,
                            'artist_msid': str,
                            'artist_mbids': list(str),
                            'listen_count': int
                        }],
                        user2: [{...}],
                    }
    """

    result = run_query("""
            SELECT user_name
                 , artist_name
                 , CASE
                     WHEN cardinality(artist_mbids) > 0 THEN NULL
                     ELSE nullif(artist_msid, '')
                   END as artist_msid
                 , artist_mbids
                 , count(artist_name) as listen_count
              FROM {table}
          GROUP BY user_name
                 , artist_name
                 , artist_msid
                 , artist_mbids
            """.format(table=table))

    iterator = result \
        .withColumn("artists", struct("listen_count", "artist_name", "artist_msid", "artist_mbids")) \
        .groupBy("user_name") \
        .agg(sort_array(collect_list("artists"), asc=False).alias("artists")) \
        .toLocalIterator()

    return iterator 
開發者ID:metabrainz,項目名稱:listenbrainz-server,代碼行數:45,代碼來源:artist.py

示例15: transform

# 需要導入模塊: from pyspark.sql import functions [as 別名]
# 或者: from pyspark.sql.functions import collect_list [as 別名]
def transform(longitudinal_addons):
    # Only for logging, not used, but may be interesting for later analysis.
    guid_set_unique = (
        longitudinal_addons.withColumn(
            "exploded", F.explode(longitudinal_addons.installed_addons)
        )
        .select("exploded")  # noqa: E501 - long lines
        .rdd.flatMap(lambda x: x)
        .distinct()
        .collect()
    )
    logging.info(
        "Number of unique guids co-installed in sample: " + str(len(guid_set_unique))
    )

    restructured = longitudinal_addons.rdd.flatMap(
        lambda x: key_all(x.installed_addons)
    ).toDF(["key_addon", "coinstalled_addons"])

    # Explode the list of co-installs and count pair occurrences.
    addon_co_installations = (
        restructured.select(
            "key_addon", F.explode("coinstalled_addons").alias("coinstalled_addon")
        )  # noqa: E501 - long lines
        .groupBy("key_addon", "coinstalled_addon")
        .count()
    )

    # Collect the set of coinstalled_addon, count pairs for each key_addon.
    combine_and_map_cols = F.udf(
        lambda x, y: (x, y),
        StructType([StructField("id", StringType()), StructField("n", LongType())]),
    )

    # Spark functions are sometimes long and unwieldy. Tough luck.
    # Ignore E128 and E501 long line errors
    addon_co_installations_collapsed = (
        addon_co_installations.select(  # noqa: E128
            "key_addon",
            combine_and_map_cols("coinstalled_addon", "count").alias(  # noqa: E501
                "id_n"
            ),
        )
        .groupby("key_addon")
        .agg(F.collect_list("id_n").alias("coinstallation_counts"))
    )
    logging.info(addon_co_installations_collapsed.printSchema())
    logging.info("Collecting final result of co-installations.")

    return addon_co_installations_collapsed 
開發者ID:mozilla,項目名稱:telemetry-airflow,代碼行數:52,代碼來源:taar_lite_guidguid.py


注:本文中的pyspark.sql.functions.collect_list方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。