當前位置: 首頁>>代碼示例>>Python>>正文


Python regression.LabeledPoint方法代碼示例

本文整理匯總了Python中pyspark.mllib.regression.LabeledPoint方法的典型用法代碼示例。如果您正苦於以下問題:Python regression.LabeledPoint方法的具體用法?Python regression.LabeledPoint怎麽用?Python regression.LabeledPoint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.mllib.regression的用法示例。


在下文中一共展示了regression.LabeledPoint方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: to_labeled_point

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def to_labeled_point(sc, features, labels, categorical=False):
    """Convert numpy arrays of features and labels into
    a LabeledPoint RDD for MLlib and ML integration.

    :param sc: Spark context
    :param features: numpy array with features
    :param labels: numpy array with labels
    :param categorical: boolean, whether labels are already one-hot encoded or not
    :return: LabeledPoint RDD with features and labels
    """
    labeled_points = []
    for x, y in zip(features, labels):
        if categorical:
            lp = LabeledPoint(np.argmax(y), to_vector(x))
        else:
            lp = LabeledPoint(y, to_vector(x))
        labeled_points.append(lp)
    return sc.parallelize(labeled_points) 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:20,代碼來源:rdd_utils.py

示例2: from_labeled_point

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def from_labeled_point(rdd, categorical=False, nb_classes=None):
    """Convert a LabeledPoint RDD back to a pair of numpy arrays

    :param rdd: LabeledPoint RDD
    :param categorical: boolean, if labels should be one-hot encode when returned
    :param nb_classes: optional int, indicating the number of class labels
    :return: pair of numpy arrays, features and labels
    """
    features = np.asarray(
        rdd.map(lambda lp: from_vector(lp.features)).collect())
    labels = np.asarray(rdd.map(lambda lp: lp.label).collect(), dtype='int32')
    if categorical:
        if not nb_classes:
            nb_classes = np.max(labels) + 1
        temp = np.zeros((len(labels), nb_classes))
        for i, label in enumerate(labels):
            temp[i, label] = 1.
        labels = temp
    return features, labels 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:21,代碼來源:rdd_utils.py

示例3: lp_to_simple_rdd

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def lp_to_simple_rdd(lp_rdd, categorical=False, nb_classes=None):
    """Convert a LabeledPoint RDD into an RDD of feature-label pairs

    :param lp_rdd: LabeledPoint RDD of features and labels
    :param categorical: boolean, if labels should be one-hot encode when returned
    :param nb_classes: int, number of total classes
    :return: Spark RDD with feature-label pairs
    """
    if categorical:
        if not nb_classes:
            labels = np.asarray(lp_rdd.map(
                lambda lp: lp.label).collect(), dtype='int32')
            nb_classes = np.max(labels) + 1
        rdd = lp_rdd.map(lambda lp: (from_vector(lp.features),
                                     encode_label(lp.label, nb_classes)))
    else:
        rdd = lp_rdd.map(lambda lp: (from_vector(lp.features), lp.label))
    return rdd 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:20,代碼來源:rdd_utils.py

示例4: parse_point

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def parse_point(line):
    ptn1 = "\(([\d\.]*),\sSparseVector\((.*?)\)\)"
    ptn2 = "(\d+),\s+\{(.*?)\}"
    m = re.search(ptn1, line)
    if m:
        label = float(m.group(1))
        features_str = m.group(2)
        mx = re.search(ptn2, features_str)
        num = float(mx.group(1))
        fs = mx.group(2)
        idx_set = []
        tfidf_scores = []
        if fs != '':
            fs_split = fs.split(', ')
            for f in fs_split:
                idx_set.append(f.split(': ')[0])
                tfidf_scores.append(f.split(': ')[1])
        sp = SparseVector(num, idx_set, tfidf_scores)
        LP = LabeledPoint(label, sp)
        return LP
    return None


# Find the best step_size through cross validation, using RMSE as the error measurement 
開發者ID:hanhanwu,項目名稱:Hanhan-Spark-Python,代碼行數:26,代碼來源:tfidf_cv_lowestRMSE.py

示例5: test_chi_sq_pearson

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def test_chi_sq_pearson(self):
        data = [
            LabeledPoint(0.0, Vectors.dense([0.5, 10.0])),
            LabeledPoint(0.0, Vectors.dense([1.5, 20.0])),
            LabeledPoint(1.0, Vectors.dense([1.5, 30.0])),
            LabeledPoint(0.0, Vectors.dense([3.5, 30.0])),
            LabeledPoint(0.0, Vectors.dense([3.5, 40.0])),
            LabeledPoint(1.0, Vectors.dense([3.5, 40.0]))
        ]

        for numParts in [2, 4, 6, 8]:
            chi = Statistics.chiSqTest(self.sc.parallelize(data, numParts))
            feature1 = chi[0]
            self.assertEqual(feature1.statistic, 0.75)
            self.assertEqual(feature1.degreesOfFreedom, 2)
            self.assertAlmostEqual(feature1.pValue, 0.6873, 4)

            feature2 = chi[1]
            self.assertEqual(feature2.statistic, 1.5)
            self.assertEqual(feature2.degreesOfFreedom, 3)
            self.assertAlmostEqual(feature2.pValue, 0.6823, 4) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:23,代碼來源:tests.py

示例6: saveAsLibSVMFile

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def saveAsLibSVMFile(data, dir):
        """
        Save labeled data in LIBSVM format.

        :param data: an RDD of LabeledPoint to be saved
        :param dir: directory to save the data

        >>> from tempfile import NamedTemporaryFile
        >>> from fileinput import input
        >>> from pyspark.mllib.regression import LabeledPoint
        >>> from glob import glob
        >>> from pyspark.mllib.util import MLUtils
        >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])),
        ...             LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))]
        >>> tempFile = NamedTemporaryFile(delete=True)
        >>> tempFile.close()
        >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name)
        >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*"))))
        '0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n'
        """
        lines = data.map(lambda p: MLUtils._convert_labeled_point_to_libsvm(p))
        lines.saveAsTextFile(dir) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:24,代碼來源:util.py

示例7: loadLabeledPoints

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def loadLabeledPoints(sc, path, minPartitions=None):
        """
        Load labeled points saved using RDD.saveAsTextFile.

        :param sc: Spark context
        :param path: file or directory path in any Hadoop-supported file
                     system URI
        :param minPartitions: min number of partitions
        @return: labeled data stored as an RDD of LabeledPoint

        >>> from tempfile import NamedTemporaryFile
        >>> from pyspark.mllib.util import MLUtils
        >>> from pyspark.mllib.regression import LabeledPoint
        >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])),
        ...             LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))]
        >>> tempFile = NamedTemporaryFile(delete=True)
        >>> tempFile.close()
        >>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name)
        >>> MLUtils.loadLabeledPoints(sc, tempFile.name).collect()
        [LabeledPoint(1.1, (3,[0,2],[-1.23,4.56e-07])), LabeledPoint(0.0, [1.01,2.02,3.03])]
        """
        minPartitions = minPartitions or min(sc.defaultParallelism, 2)
        return callMLlibFunc("loadLabeledPoints", sc, path, minPartitions) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:25,代碼來源:util.py

示例8: saveAsLibSVMFile

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def saveAsLibSVMFile(data, dir):
        """
        Save labeled data in LIBSVM format.

        @param data: an RDD of LabeledPoint to be saved
        @param dir: directory to save the data

        >>> from tempfile import NamedTemporaryFile
        >>> from fileinput import input
        >>> from glob import glob
        >>> from pyspark.mllib.util import MLUtils
        >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), \
                        LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))]
        >>> tempFile = NamedTemporaryFile(delete=True)
        >>> tempFile.close()
        >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name)
        >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*"))))
        '0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n'
        """
        lines = data.map(lambda p: MLUtils._convert_labeled_point_to_libsvm(p))
        lines.saveAsTextFile(dir) 
開發者ID:adobe-research,項目名稱:spark-cluster-deployment,代碼行數:23,代碼來源:util.py

示例9: parsePoint

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def parsePoint(line):
    values = csv.reader(StringIO(line), delimiter=";").next() # CSV parsing of line
    values = [float(x) for x in values]                       # Cast to all floats
    return LabeledPoint(values[-1], values[:-1])              # y = quality, X = row[:-1] 
開發者ID:oreillymedia,項目名稱:Data_Analytics_with_Hadoop,代碼行數:6,代碼來源:wines.py

示例10: from_data_frame

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def from_data_frame(df, categorical=False, nb_classes=None):
    """Convert DataFrame back to pair of numpy arrays
    """
    lp_rdd = df.rdd.map(lambda row: LabeledPoint(row.label, row.features))
    features, labels = from_labeled_point(lp_rdd, categorical, nb_classes)
    return features, labels 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:8,代碼來源:adapter.py

示例11: df_to_simple_rdd

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def df_to_simple_rdd(df, categorical=False, nb_classes=None, features_col='features', label_col='label'):
    """Convert DataFrame into RDD of pairs
    """
    sql_context = df.sql_ctx
    sql_context.registerDataFrameAsTable(df, "temp_table")
    selected_df = sql_context.sql(
        "SELECT {0} AS features, {1} as label from temp_table".format(features_col, label_col))
    if isinstance(selected_df.first().features, MLLibVector):
        lp_rdd = selected_df.rdd.map(
            lambda row: LabeledPoint(row.label, row.features))
    else:
        lp_rdd = selected_df.rdd.map(lambda row: LabeledPoint(
            row.label, MLLibVectors.fromML(row.features)))
    rdd = lp_to_simple_rdd(lp_rdd, categorical, nb_classes)
    return rdd 
開發者ID:maxpumperla,項目名稱:elephas,代碼行數:17,代碼來源:adapter.py

示例12: get_lp

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def get_lp(t):
    rating = t[1][0]
    avg_features = t[1][1]
    return LabeledPoint(rating, avg_features) 
開發者ID:hanhanwu,項目名稱:Hanhan-Spark-Python,代碼行數:6,代碼來源:word2vec_best_RMSE.py

示例13: get_lp

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def get_lp(t):
    rating = t[0]
    sp = t[1]
    return LabeledPoint(rating, sp) 
開發者ID:hanhanwu,項目名稱:Hanhan-Spark-Python,代碼行數:6,代碼來源:word2vec_histogram_best_RMSE.py

示例14: test_infer_schema

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def test_infer_schema(self):
        rdd = self.sc.parallelize([LabeledPoint(1.0, self.dv1), LabeledPoint(0.0, self.sv1)])
        df = rdd.toDF()
        schema = df.schema
        field = [f for f in schema.fields if f.name == "features"][0]
        self.assertEqual(field.dataType, self.udt)
        vectors = df.rdd.map(lambda p: p.features).collect()
        self.assertEqual(len(vectors), 2)
        for v in vectors:
            if isinstance(v, SparseVector):
                self.assertEqual(v, self.sv1)
            elif isinstance(v, DenseVector):
                self.assertEqual(v, self.dv1)
            else:
                raise TypeError("expecting a vector but got %r of type %r" % (v, type(v))) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:17,代碼來源:tests.py

示例15: test_classification

# 需要導入模塊: from pyspark.mllib import regression [as 別名]
# 或者: from pyspark.mllib.regression import LabeledPoint [as 別名]
def test_classification(self):
        from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
        from pyspark.mllib.tree import DecisionTree
        data = [
            LabeledPoint(0.0, self.scipy_matrix(2, {0: 1.0})),
            LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})),
            LabeledPoint(0.0, self.scipy_matrix(2, {0: 2.0})),
            LabeledPoint(1.0, self.scipy_matrix(2, {1: 2.0}))
        ]
        rdd = self.sc.parallelize(data)
        features = [p.features for p in data]

        lr_model = LogisticRegressionWithSGD.train(rdd)
        self.assertTrue(lr_model.predict(features[0]) <= 0)
        self.assertTrue(lr_model.predict(features[1]) > 0)
        self.assertTrue(lr_model.predict(features[2]) <= 0)
        self.assertTrue(lr_model.predict(features[3]) > 0)

        svm_model = SVMWithSGD.train(rdd)
        self.assertTrue(svm_model.predict(features[0]) <= 0)
        self.assertTrue(svm_model.predict(features[1]) > 0)
        self.assertTrue(svm_model.predict(features[2]) <= 0)
        self.assertTrue(svm_model.predict(features[3]) > 0)

        nb_model = NaiveBayes.train(rdd)
        self.assertTrue(nb_model.predict(features[0]) <= 0)
        self.assertTrue(nb_model.predict(features[1]) > 0)
        self.assertTrue(nb_model.predict(features[2]) <= 0)
        self.assertTrue(nb_model.predict(features[3]) > 0)

        categoricalFeaturesInfo = {0: 3}  # feature 0 has 3 categories
        dt_model = DecisionTree.trainClassifier(rdd, numClasses=2,
                                                categoricalFeaturesInfo=categoricalFeaturesInfo)
        self.assertTrue(dt_model.predict(features[0]) <= 0)
        self.assertTrue(dt_model.predict(features[1]) > 0)
        self.assertTrue(dt_model.predict(features[2]) <= 0)
        self.assertTrue(dt_model.predict(features[3]) > 0) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:39,代碼來源:tests.py


注:本文中的pyspark.mllib.regression.LabeledPoint方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。