當前位置: 首頁>>代碼示例>>Python>>正文


Python Vectors.sparse方法代碼示例

本文整理匯總了Python中pyspark.ml.linalg.Vectors.sparse方法的典型用法代碼示例。如果您正苦於以下問題:Python Vectors.sparse方法的具體用法?Python Vectors.sparse怎麽用?Python Vectors.sparse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.ml.linalg.Vectors的用法示例。


在下文中一共展示了Vectors.sparse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_small_sparse

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_small_sparse(self):
        xor = [(0.0, Vectors.sparse(2,[0,1],[0.0,0.0])),
               (0.0, Vectors.sparse(2,[0,1],[1.0,1.0])),
               (1.0, Vectors.sparse(2,[0],[1.0])),
               (1.0, Vectors.sparse(2,[1],[1.0]))]
        processed = self.spark.createDataFrame(xor, ["label", "features"])

        mg=build_graph(SparkFlowTests.create_model)
        spark_model = SparkAsyncDL(
            inputCol='features',
            tensorflowGraph=mg,
            tfInput='x:0',
            tfLabel='y:0',
            tfOutput='outer/Sigmoid:0',
            tfOptimizer='adam',
            tfLearningRate=.1,
            iters=35,
            partitions=2,
            predictionCol='predicted',
            labelCol='label'
        )
        assert spark_model.fit(processed).transform(processed).collect() is not None 
開發者ID:lifeomic,項目名稱:sparkflow,代碼行數:24,代碼來源:dl_runner.py

示例2: test_linear_regression_pmml_basic

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_linear_regression_pmml_basic(self):
        # Most of the validation is done in the Scala side, here we just check
        # that we output text rather than parquet (e.g. that the format flag
        # was respected).
        df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)),
                                         (0.0, 2.0, Vectors.sparse(1, [], []))],
                                        ["label", "weight", "features"])
        lr = LinearRegression(maxIter=1)
        model = lr.fit(df)
        path = tempfile.mkdtemp()
        lr_path = path + "/lr-pmml"
        model.write().format("pmml").save(lr_path)
        pmml_text_list = self.sc.textFile(lr_path).collect()
        pmml_text = "\n".join(pmml_text_list)
        self.assertIn("Apache Spark", pmml_text)
        self.assertIn("PMML", pmml_text) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:18,代碼來源:tests.py

示例3: test_onevsrest

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_onevsrest(self):
        temp_path = tempfile.mkdtemp()
        df = self.spark.createDataFrame([(0.0, Vectors.dense(1.0, 0.8)),
                                         (1.0, Vectors.sparse(2, [], [])),
                                         (2.0, Vectors.dense(0.5, 0.5))] * 10,
                                        ["label", "features"])
        lr = LogisticRegression(maxIter=5, regParam=0.01)
        ovr = OneVsRest(classifier=lr)
        model = ovr.fit(df)
        ovrPath = temp_path + "/ovr"
        ovr.save(ovrPath)
        loadedOvr = OneVsRest.load(ovrPath)
        self._compare_pipelines(ovr, loadedOvr)
        modelPath = temp_path + "/ovrModel"
        model.save(modelPath)
        loadedModel = OneVsRestModel.load(modelPath)
        self._compare_pipelines(model, loadedModel) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:19,代碼來源:tests.py

示例4: test_gaussian_mixture_summary

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_gaussian_mixture_summary(self):
        data = [(Vectors.dense(1.0),), (Vectors.dense(5.0),), (Vectors.dense(10.0),),
                (Vectors.sparse(1, [], []),)]
        df = self.spark.createDataFrame(data, ["features"])
        gmm = GaussianMixture(k=2)
        model = gmm.fit(df)
        self.assertTrue(model.hasSummary)
        s = model.summary
        self.assertTrue(isinstance(s.predictions, DataFrame))
        self.assertEqual(s.probabilityCol, "probability")
        self.assertTrue(isinstance(s.probability, DataFrame))
        self.assertEqual(s.featuresCol, "features")
        self.assertEqual(s.predictionCol, "prediction")
        self.assertTrue(isinstance(s.cluster, DataFrame))
        self.assertEqual(len(s.clusterSizes), 2)
        self.assertEqual(s.k, 2)
        self.assertEqual(s.numIter, 3) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:19,代碼來源:tests.py

示例5: test_model_linear_regression_basic

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_model_linear_regression_basic(self):
        data = self.spark.createDataFrame([
            (1.0, 2.0, Vectors.dense(1.0)),
            (0.0, 2.0, Vectors.sparse(1, [], []))
        ], ["label", "weight", "features"])
        lr = LinearRegression(maxIter=5, regParam=0.0, solver="normal", weightCol="weight")
        model = lr.fit(data)
        # the name of the input is 'features'
        C = model.numFeatures
        model_onnx = convert_sparkml(model, 'sparkml LinearRegressorBasic', [('features', FloatTensorType([1, C]))])
        self.assertTrue(model_onnx is not None)
        # run the model
        import pandas
        predicted = model.transform(data)
        data_np = data.toPandas().features.apply(lambda x: pandas.Series(x.toArray())).values.astype(numpy.float32)
        expected = [ predicted.toPandas().prediction.values.astype(numpy.float32) ]
        paths = save_data_models(data_np, expected, model, model_onnx,
                                    basename="SparkmlLinearRegressor_Basic")
        onnx_model_path = paths[3]
        output, output_shapes = run_onnx_model(['prediction'], data_np, onnx_model_path)
        compare_results(expected, output, decimal=5) 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:23,代碼來源:test_linear_regressor.py

示例6: test_aft_regression_survival

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_aft_regression_survival(self):
        data = self.spark.createDataFrame([
            (1.0, Vectors.dense(1.0), 1.0),
            (1e-40, Vectors.sparse(1, [], []), 0.0)
        ], ["label", "features", "censor"])
        gbt = AFTSurvivalRegression()
        model = gbt.fit(data)
        feature_count = data.first()[1].size
        model_onnx = convert_sparkml(model, 'Sparkml AFTSurvivalRegression', [
            ('features', FloatTensorType([1, feature_count]))
        ], spark_session=self.spark)
        self.assertTrue(model_onnx is not None)
        # run the model
        predicted = model.transform(data)
        data_np = data.toPandas().features.apply(lambda x: pandas.Series(x.toArray())).values.astype(numpy.float32)
        expected = [
            predicted.toPandas().prediction.values.astype(numpy.float32),
        ]
        paths = save_data_models(data_np, expected, model, model_onnx,
                                    basename="SparkmlAFTSurvivalRegression")
        onnx_model_path = paths[3]
        output, output_shapes = run_onnx_model(['prediction'], data_np, onnx_model_path)
        compare_results(expected, output, decimal=5) 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:25,代碼來源:test_aft_survival_regression.py

示例7: test_model_polynomial_expansion

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_model_polynomial_expansion(self):
        data = self.spark.createDataFrame([
            (Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
            (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
            (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)
        ], ["features"])
        pca = PCA(k=2, inputCol="features", outputCol="pca_features")
        model = pca.fit(data)

        # the input name should match that of what StringIndexer.inputCol
        feature_count = data.first()[0].size
        N = data.count()
        model_onnx = convert_sparkml(model, 'Sparkml PCA', [('features', FloatTensorType([N, feature_count]))])
        self.assertTrue(model_onnx is not None)

        # run the model
        predicted = model.transform(data)
        expected = predicted.toPandas().pca_features.apply(lambda x: pandas.Series(x.toArray())).values.astype(numpy.float32)
        data_np = data.toPandas().features.apply(lambda x: pandas.Series(x.toArray())).values.astype(numpy.float32)
        paths = save_data_models(data_np, expected, model, model_onnx, basename="SparkmlPCA")
        onnx_model_path = paths[3]
        output, output_shapes = run_onnx_model(['pca_features'], data_np, onnx_model_path)
        compare_results(expected, output, decimal=5) 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:25,代碼來源:test_PCA.py

示例8: test_gbt_regressor

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_gbt_regressor(self):
        data = self.spark.createDataFrame([
            (1.0, Vectors.dense(1.0)),
            (0.0, Vectors.sparse(1, [], []))
        ], ["label", "features"])
        gbt = GBTRegressor(maxIter=5, maxDepth=2, seed=42)
        model = gbt.fit(data)
        feature_count = data.first()[1].size
        model_onnx = convert_sparkml(model, 'Sparkml GBTRegressor', [
            ('features', FloatTensorType([1, feature_count]))
        ], spark_session=self.spark)
        self.assertTrue(model_onnx is not None)
        # run the model
        predicted = model.transform(data)
        data_np = data.toPandas().features.apply(lambda x: pandas.Series(x.toArray())).values.astype(numpy.float32)
        expected = [
            predicted.toPandas().prediction.values.astype(numpy.float32),
        ]
        paths = save_data_models(data_np, expected, model, model_onnx,
                                    basename="SparkmlGBTRegressor")
        onnx_model_path = paths[3]
        output, output_shapes = run_onnx_model(['prediction'], data_np, onnx_model_path)
        compare_results(expected, output, decimal=5) 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:25,代碼來源:test_gbt_regressor.py

示例9: test_java_object_gets_detached

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_java_object_gets_detached(self):
        df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)),
                                         (0.0, 2.0, Vectors.sparse(1, [], []))],
                                        ["label", "weight", "features"])
        lr = LinearRegression(maxIter=1, regParam=0.0, solver="normal", weightCol="weight",
                              fitIntercept=False)

        model = lr.fit(df)
        summary = model.summary

        self.assertIsInstance(model, JavaWrapper)
        self.assertIsInstance(summary, JavaWrapper)
        self.assertIsInstance(model, JavaParams)
        self.assertNotIsInstance(summary, JavaParams)

        error_no_object = 'Target Object ID does not exist for this gateway'

        self.assertIn("LinearRegression_", model._java_obj.toString())
        self.assertIn("LinearRegressionTrainingSummary", summary._java_obj.toString())

        model.__del__()

        with self.assertRaisesRegexp(py4j.protocol.Py4JError, error_no_object):
            model._java_obj.toString()
        self.assertIn("LinearRegressionTrainingSummary", summary._java_obj.toString())

        try:
            summary.__del__()
        except:
            pass

        with self.assertRaisesRegexp(py4j.protocol.Py4JError, error_no_object):
            model._java_obj.toString()
        with self.assertRaisesRegexp(py4j.protocol.Py4JError, error_no_object):
            summary._java_obj.toString() 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:37,代碼來源:tests.py

示例10: test_persistence

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_persistence(self):
        # Test save/load for LDA, LocalLDAModel, DistributedLDAModel.
        df = self.spark.createDataFrame([
            [1, Vectors.dense([0.0, 1.0])],
            [2, Vectors.sparse(2, {0: 1.0})],
        ], ["id", "features"])
        # Fit model
        lda = LDA(k=2, seed=1, optimizer="em")
        distributedModel = lda.fit(df)
        self.assertTrue(distributedModel.isDistributed())
        localModel = distributedModel.toLocal()
        self.assertFalse(localModel.isDistributed())
        # Define paths
        path = tempfile.mkdtemp()
        lda_path = path + "/lda"
        dist_model_path = path + "/distLDAModel"
        local_model_path = path + "/localLDAModel"
        # Test LDA
        lda.save(lda_path)
        lda2 = LDA.load(lda_path)
        self._compare(lda, lda2)
        # Test DistributedLDAModel
        distributedModel.save(dist_model_path)
        distributedModel2 = DistributedLDAModel.load(dist_model_path)
        self._compare(distributedModel, distributedModel2)
        # Test LocalLDAModel
        localModel.save(local_model_path)
        localModel2 = LocalLDAModel.load(local_model_path)
        self._compare(localModel, localModel2)
        # Clean up
        try:
            rmtree(path)
        except OSError:
            pass 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:36,代碼來源:tests.py

示例11: test_linear_regression_summary

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_linear_regression_summary(self):
        df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)),
                                         (0.0, 2.0, Vectors.sparse(1, [], []))],
                                        ["label", "weight", "features"])
        lr = LinearRegression(maxIter=5, regParam=0.0, solver="normal", weightCol="weight",
                              fitIntercept=False)
        model = lr.fit(df)
        self.assertTrue(model.hasSummary)
        s = model.summary
        # test that api is callable and returns expected types
        self.assertGreater(s.totalIterations, 0)
        self.assertTrue(isinstance(s.predictions, DataFrame))
        self.assertEqual(s.predictionCol, "prediction")
        self.assertEqual(s.labelCol, "label")
        self.assertEqual(s.featuresCol, "features")
        objHist = s.objectiveHistory
        self.assertTrue(isinstance(objHist, list) and isinstance(objHist[0], float))
        self.assertAlmostEqual(s.explainedVariance, 0.25, 2)
        self.assertAlmostEqual(s.meanAbsoluteError, 0.0)
        self.assertAlmostEqual(s.meanSquaredError, 0.0)
        self.assertAlmostEqual(s.rootMeanSquaredError, 0.0)
        self.assertAlmostEqual(s.r2, 1.0, 2)
        self.assertAlmostEqual(s.r2adj, 1.0, 2)
        self.assertTrue(isinstance(s.residuals, DataFrame))
        self.assertEqual(s.numInstances, 2)
        self.assertEqual(s.degreesOfFreedom, 1)
        devResiduals = s.devianceResiduals
        self.assertTrue(isinstance(devResiduals, list) and isinstance(devResiduals[0], float))
        coefStdErr = s.coefficientStandardErrors
        self.assertTrue(isinstance(coefStdErr, list) and isinstance(coefStdErr[0], float))
        tValues = s.tValues
        self.assertTrue(isinstance(tValues, list) and isinstance(tValues[0], float))
        pValues = s.pValues
        self.assertTrue(isinstance(pValues, list) and isinstance(pValues[0], float))
        # test evaluation (with training dataset) produces a summary with same values
        # one check is enough to verify a summary is returned
        # The child class LinearRegressionTrainingSummary runs full test
        sameSummary = model.evaluate(df)
        self.assertAlmostEqual(sameSummary.explainedVariance, s.explainedVariance) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:41,代碼來源:tests.py

示例12: test_binary_logistic_regression_summary

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_binary_logistic_regression_summary(self):
        df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)),
                                         (0.0, 2.0, Vectors.sparse(1, [], []))],
                                        ["label", "weight", "features"])
        lr = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight", fitIntercept=False)
        model = lr.fit(df)
        self.assertTrue(model.hasSummary)
        s = model.summary
        # test that api is callable and returns expected types
        self.assertTrue(isinstance(s.predictions, DataFrame))
        self.assertEqual(s.probabilityCol, "probability")
        self.assertEqual(s.labelCol, "label")
        self.assertEqual(s.featuresCol, "features")
        self.assertEqual(s.predictionCol, "prediction")
        objHist = s.objectiveHistory
        self.assertTrue(isinstance(objHist, list) and isinstance(objHist[0], float))
        self.assertGreater(s.totalIterations, 0)
        self.assertTrue(isinstance(s.labels, list))
        self.assertTrue(isinstance(s.truePositiveRateByLabel, list))
        self.assertTrue(isinstance(s.falsePositiveRateByLabel, list))
        self.assertTrue(isinstance(s.precisionByLabel, list))
        self.assertTrue(isinstance(s.recallByLabel, list))
        self.assertTrue(isinstance(s.fMeasureByLabel(), list))
        self.assertTrue(isinstance(s.fMeasureByLabel(1.0), list))
        self.assertTrue(isinstance(s.roc, DataFrame))
        self.assertAlmostEqual(s.areaUnderROC, 1.0, 2)
        self.assertTrue(isinstance(s.pr, DataFrame))
        self.assertTrue(isinstance(s.fMeasureByThreshold, DataFrame))
        self.assertTrue(isinstance(s.precisionByThreshold, DataFrame))
        self.assertTrue(isinstance(s.recallByThreshold, DataFrame))
        self.assertAlmostEqual(s.accuracy, 1.0, 2)
        self.assertAlmostEqual(s.weightedTruePositiveRate, 1.0, 2)
        self.assertAlmostEqual(s.weightedFalsePositiveRate, 0.0, 2)
        self.assertAlmostEqual(s.weightedRecall, 1.0, 2)
        self.assertAlmostEqual(s.weightedPrecision, 1.0, 2)
        self.assertAlmostEqual(s.weightedFMeasure(), 1.0, 2)
        self.assertAlmostEqual(s.weightedFMeasure(1.0), 1.0, 2)
        # test evaluation (with training dataset) produces a summary with same values
        # one check is enough to verify a summary is returned, Scala version runs full test
        sameSummary = model.evaluate(df)
        self.assertAlmostEqual(sameSummary.areaUnderROC, s.areaUnderROC) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:43,代碼來源:tests.py

示例13: test_multiclass_logistic_regression_summary

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_multiclass_logistic_regression_summary(self):
        df = self.spark.createDataFrame([(1.0, 2.0, Vectors.dense(1.0)),
                                         (0.0, 2.0, Vectors.sparse(1, [], [])),
                                         (2.0, 2.0, Vectors.dense(2.0)),
                                         (2.0, 2.0, Vectors.dense(1.9))],
                                        ["label", "weight", "features"])
        lr = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight", fitIntercept=False)
        model = lr.fit(df)
        self.assertTrue(model.hasSummary)
        s = model.summary
        # test that api is callable and returns expected types
        self.assertTrue(isinstance(s.predictions, DataFrame))
        self.assertEqual(s.probabilityCol, "probability")
        self.assertEqual(s.labelCol, "label")
        self.assertEqual(s.featuresCol, "features")
        self.assertEqual(s.predictionCol, "prediction")
        objHist = s.objectiveHistory
        self.assertTrue(isinstance(objHist, list) and isinstance(objHist[0], float))
        self.assertGreater(s.totalIterations, 0)
        self.assertTrue(isinstance(s.labels, list))
        self.assertTrue(isinstance(s.truePositiveRateByLabel, list))
        self.assertTrue(isinstance(s.falsePositiveRateByLabel, list))
        self.assertTrue(isinstance(s.precisionByLabel, list))
        self.assertTrue(isinstance(s.recallByLabel, list))
        self.assertTrue(isinstance(s.fMeasureByLabel(), list))
        self.assertTrue(isinstance(s.fMeasureByLabel(1.0), list))
        self.assertAlmostEqual(s.accuracy, 0.75, 2)
        self.assertAlmostEqual(s.weightedTruePositiveRate, 0.75, 2)
        self.assertAlmostEqual(s.weightedFalsePositiveRate, 0.25, 2)
        self.assertAlmostEqual(s.weightedRecall, 0.75, 2)
        self.assertAlmostEqual(s.weightedPrecision, 0.583, 2)
        self.assertAlmostEqual(s.weightedFMeasure(), 0.65, 2)
        self.assertAlmostEqual(s.weightedFMeasure(1.0), 0.65, 2)
        # test evaluation (with training dataset) produces a summary with same values
        # one check is enough to verify a summary is returned, Scala version runs full test
        sameSummary = model.evaluate(df)
        self.assertAlmostEqual(sameSummary.accuracy, s.accuracy) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:39,代碼來源:tests.py

示例14: test_bisecting_kmeans_summary

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_bisecting_kmeans_summary(self):
        data = [(Vectors.dense(1.0),), (Vectors.dense(5.0),), (Vectors.dense(10.0),),
                (Vectors.sparse(1, [], []),)]
        df = self.spark.createDataFrame(data, ["features"])
        bkm = BisectingKMeans(k=2)
        model = bkm.fit(df)
        self.assertTrue(model.hasSummary)
        s = model.summary
        self.assertTrue(isinstance(s.predictions, DataFrame))
        self.assertEqual(s.featuresCol, "features")
        self.assertEqual(s.predictionCol, "prediction")
        self.assertTrue(isinstance(s.cluster, DataFrame))
        self.assertEqual(len(s.clusterSizes), 2)
        self.assertEqual(s.k, 2)
        self.assertEqual(s.numIter, 20) 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:17,代碼來源:tests.py

示例15: test_copy

# 需要導入模塊: from pyspark.ml.linalg import Vectors [as 別名]
# 或者: from pyspark.ml.linalg.Vectors import sparse [as 別名]
def test_copy(self):
        df = self.spark.createDataFrame([(0.0, Vectors.dense(1.0, 0.8)),
                                         (1.0, Vectors.sparse(2, [], [])),
                                         (2.0, Vectors.dense(0.5, 0.5))],
                                        ["label", "features"])
        lr = LogisticRegression(maxIter=5, regParam=0.01)
        ovr = OneVsRest(classifier=lr)
        ovr1 = ovr.copy({lr.maxIter: 10})
        self.assertEqual(ovr.getClassifier().getMaxIter(), 5)
        self.assertEqual(ovr1.getClassifier().getMaxIter(), 10)
        model = ovr.fit(df)
        model1 = model.copy({model.predictionCol: "indexed"})
        self.assertEqual(model1.getPredictionCol(), "indexed") 
開發者ID:runawayhorse001,項目名稱:LearningApacheSpark,代碼行數:15,代碼來源:tests.py


注:本文中的pyspark.ml.linalg.Vectors.sparse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。