當前位置: 首頁>>代碼示例>>Python>>正文


Python feature.HashingTF方法代碼示例

本文整理匯總了Python中pyspark.ml.feature.HashingTF方法的典型用法代碼示例。如果您正苦於以下問題:Python feature.HashingTF方法的具體用法?Python feature.HashingTF怎麽用?Python feature.HashingTF使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyspark.ml.feature的用法示例。


在下文中一共展示了feature.HashingTF方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_clusters

# 需要導入模塊: from pyspark.ml import feature [as 別名]
# 或者: from pyspark.ml.feature import HashingTF [as 別名]
def compute_clusters(addons_df, num_clusters, random_seed):
    """ Performs user clustering by using add-on ids as features.
    """

    # Build the stages of the pipeline. We need hashing to make the next
    # steps work.
    hashing_stage = HashingTF(inputCol="addon_ids", outputCol="hashed_features")
    idf_stage = IDF(
        inputCol="hashed_features", outputCol="features", minDocFreq=1
    )
    # As a future improvement, we may add a sane value for the minimum cluster size
    # to BisectingKMeans (e.g. minDivisibleClusterSize). For now, just make sure
    # to pass along the random seed if needed for tests.
    kmeans_kwargs = {"seed": random_seed} if random_seed else {}
    bkmeans_stage = BisectingKMeans(k=num_clusters, **kmeans_kwargs)
    pipeline = Pipeline(stages=[hashing_stage, idf_stage, bkmeans_stage])

    # Run the pipeline and compute the results.
    model = pipeline.fit(addons_df)
    return model.transform(addons_df).select(["client_id", "prediction"]) 
開發者ID:mozilla,項目名稱:telemetry-airflow,代碼行數:22,代碼來源:taar_similarity.py

示例2: compute_clusters

# 需要導入模塊: from pyspark.ml import feature [as 別名]
# 或者: from pyspark.ml.feature import HashingTF [as 別名]
def compute_clusters(addons_df, num_clusters, random_seed):
    """ Performs user clustering by using add-on ids as features.
    """

    # Build the stages of the pipeline. We need hashing to make the next
    # steps work.
    hashing_stage = HashingTF(inputCol="addon_ids", outputCol="hashed_features")
    idf_stage = IDF(inputCol="hashed_features", outputCol="features", minDocFreq=1)
    # As a future improvement, we may add a sane value for the minimum cluster size
    # to BisectingKMeans (e.g. minDivisibleClusterSize). For now, just make sure
    # to pass along the random seed if needed for tests.
    kmeans_kwargs = {"seed": random_seed} if random_seed else {}
    bkmeans_stage = BisectingKMeans(k=num_clusters, **kmeans_kwargs)
    pipeline = Pipeline(stages=[hashing_stage, idf_stage, bkmeans_stage])

    # Run the pipeline and compute the results.
    model = pipeline.fit(addons_df)
    return model.transform(addons_df).select(["client_id", "prediction"]) 
開發者ID:mozilla,項目名稱:python_mozetl,代碼行數:20,代碼來源:taar_similarity.py

示例3: build_sparkml_operator_name_map

# 需要導入模塊: from pyspark.ml import feature [as 別名]
# 或者: from pyspark.ml.feature import HashingTF [as 別名]
def build_sparkml_operator_name_map():
    res = {k: "pyspark.ml.feature." + k.__name__ for k in [
        Binarizer, BucketedRandomProjectionLSHModel, Bucketizer,
        ChiSqSelectorModel, CountVectorizerModel, DCT, ElementwiseProduct, HashingTF, IDFModel, ImputerModel,
        IndexToString, MaxAbsScalerModel, MinHashLSHModel, MinMaxScalerModel, NGram, Normalizer, OneHotEncoderModel,
        PCAModel, PolynomialExpansion, QuantileDiscretizer, RegexTokenizer,
        StandardScalerModel, StopWordsRemover, StringIndexerModel, Tokenizer, VectorAssembler, VectorIndexerModel,
        VectorSlicer, Word2VecModel
    ]}
    res.update({k: "pyspark.ml.classification." + k.__name__ for k in [
        LinearSVCModel, LogisticRegressionModel, DecisionTreeClassificationModel, GBTClassificationModel,
        RandomForestClassificationModel, NaiveBayesModel, MultilayerPerceptronClassificationModel, OneVsRestModel
    ]})
    res.update({k: "pyspark.ml.regression." + k.__name__ for k in [
        AFTSurvivalRegressionModel, DecisionTreeRegressionModel, GBTRegressionModel, GBTRegressionModel,
        GeneralizedLinearRegressionModel, IsotonicRegressionModel, LinearRegressionModel, RandomForestRegressionModel
    ]})
    return res 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:20,代碼來源:ops_names.py

示例4: main

# 需要導入模塊: from pyspark.ml import feature [as 別名]
# 或者: from pyspark.ml.feature import HashingTF [as 別名]
def main():
    # Read training data as a DataFrame
    sqlCt = SQLContext(sc)
    trainDF = sqlCt.read.parquet(training_input)
    testDF = sqlCt.read.parquet(testing_input)

    tokenizer = Tokenizer(inputCol="text", outputCol="words")
    evaluator = BinaryClassificationEvaluator()

    # no parameter tuning
    hashingTF_notuning = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features", numFeatures=1000)
    lr_notuning = LogisticRegression(maxIter=20, regParam=0.1)
    pipeline_notuning = Pipeline(stages=[tokenizer, hashingTF_notuning, lr_notuning])
    model_notuning = pipeline_notuning.fit(trainDF)

    prediction_notuning = model_notuning.transform(testDF)
    notuning_output = evaluator.evaluate(prediction_notuning)

    # for cross validation
    hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
    lr = LogisticRegression(maxIter=20)

    paramGrid = ParamGridBuilder()\
        .addGrid(hashingTF.numFeatures, [1000, 5000, 10000])\
        .addGrid(lr.regParam, [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])\
        .build()

    pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
    cv = CrossValidator(estimator=pipeline, estimatorParamMaps=paramGrid, evaluator=evaluator, numFolds=2)
    cvModel = cv.fit(trainDF)

    # Make predictions on test documents. cvModel uses the best model found.
    best_prediction = cvModel.transform(testDF)
    best_output = evaluator.evaluate(best_prediction)

    s = str(notuning_output) + '\n' + str(best_output)
    output_data = sc.parallelize([s])
    output_data.saveAsTextFile(output) 
開發者ID:hanhanwu,項目名稱:Hanhan-Spark-Python,代碼行數:40,代碼來源:spark_ml_pipline.py

示例5: test_cv_lasso_with_mllib_featurization

# 需要導入模塊: from pyspark.ml import feature [as 別名]
# 或者: from pyspark.ml.feature import HashingTF [as 別名]
def test_cv_lasso_with_mllib_featurization(self):
        data = [('hi there', 0.0),
                ('what is up', 1.0),
                ('huh', 1.0),
                ('now is the time', 5.0),
                ('for what', 0.0),
                ('the spark was there', 5.0),
                ('and so', 3.0),
                ('were many socks', 0.0),
                ('really', 1.0),
                ('too cool', 2.0)]
        data = self.sql.createDataFrame(data, ["review", "rating"])

        # Feature extraction using MLlib
        tokenizer = Tokenizer(inputCol="review", outputCol="words")
        hashingTF = HashingTF(inputCol="words", outputCol="features", numFeatures=20000)
        pipeline = Pipeline(stages=[tokenizer, hashingTF])
        data = pipeline.fit(data).transform(data)

        df = self.converter.toPandas(data.select(data.features.alias("review"), "rating"))

        pipeline = SKL_Pipeline([
            ('lasso', SKL_Lasso())
        ])
        parameters = {
            'lasso__alpha': (0.001, 0.005, 0.01)
        }

        grid_search = GridSearchCV(self.sc, pipeline, parameters)
        skl_gs = grid_search.fit(df.review.values, df.rating.values)
        assert len(skl_gs.cv_results_['params']) == len(parameters['lasso__alpha']) 
開發者ID:databricks,項目名稱:spark-sklearn,代碼行數:33,代碼來源:test_search_2.py


注:本文中的pyspark.ml.feature.HashingTF方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。