當前位置: 首頁>>代碼示例>>Python>>正文


Python pyro.infer方法代碼示例

本文整理匯總了Python中pyro.infer方法的典型用法代碼示例。如果您正苦於以下問題:Python pyro.infer方法的具體用法?Python pyro.infer怎麽用?Python pyro.infer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyro的用法示例。


在下文中一共展示了pyro.infer方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: pyro_noncentered_schools

# 需要導入模塊: import pyro [as 別名]
# 或者: from pyro import infer [as 別名]
def pyro_noncentered_schools(data, draws, chains):
    """Non-centered eight schools implementation in Pyro."""
    import torch
    from pyro.infer import MCMC, NUTS

    y = torch.from_numpy(data["y"]).float()
    sigma = torch.from_numpy(data["sigma"]).float()

    nuts_kernel = NUTS(_pyro_noncentered_model, jit_compile=True, ignore_jit_warnings=True)
    posterior = MCMC(nuts_kernel, num_samples=draws, warmup_steps=draws, num_chains=chains)
    posterior.run(data["J"], sigma, y)

    # This block lets the posterior be pickled
    posterior.sampler = None
    posterior.kernel.potential_fn = None
    return posterior


# pylint:disable=no-member,no-value-for-parameter,invalid-name 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:21,代碼來源:helpers.py

示例2: numpyro_schools_model

# 需要導入模塊: import pyro [as 別名]
# 或者: from pyro import infer [as 別名]
def numpyro_schools_model(data, draws, chains):
    """Centered eight schools implementation in NumPyro."""
    from jax.random import PRNGKey
    from numpyro.infer import MCMC, NUTS

    mcmc = MCMC(
        NUTS(_numpyro_noncentered_model),
        num_warmup=draws,
        num_samples=draws,
        num_chains=chains,
        chain_method="sequential",
    )
    mcmc.run(PRNGKey(0), extra_fields=("num_steps", "energy"), **data)

    # This block lets the posterior be pickled
    mcmc.sampler._sample_fn = None  # pylint: disable=protected-access
    mcmc.sampler._init_fn = None  # pylint: disable=protected-access
    mcmc.sampler._postprocess_fn = None  # pylint: disable=protected-access
    mcmc.sampler._potential_fn = None  # pylint: disable=protected-access
    mcmc._cache = {}  # pylint: disable=protected-access
    return mcmc 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:23,代碼來源:helpers.py

示例3: guide

# 需要導入模塊: import pyro [as 別名]
# 或者: from pyro import infer [as 別名]
def guide(self, xs, ys=None):
        """
        The guide corresponds to the following:
        q(y|x) = categorical(alpha(x))              # infer digit from an image
        q(z|x,y) = normal(mu(x,y),sigma(x,y))       # infer handwriting style from an image and the digit
        mu, sigma are given by a neural network `encoder_z`
        alpha is given by a neural network `encoder_y`

        :param xs: a batch of scaled vectors of pixels from an image
        :param ys: (optional) a batch of the class labels i.e.
                   the digit corresponding to the image(s)
        :return: None
        """
        # inform Pyro that the variables in the batch of xs, ys are conditionally independent
        with pyro.iarange("independent"):
            # if the class label (the digit) is not supervised, sample
            # (and score) the digit with the variational distribution
            # q(y|x) = categorical(alpha(x))
            if ys is None:
                alpha = self.encoder_y.forward(xs)
                ys = pyro.sample("y", dist.OneHotCategorical(alpha))

            # sample (and score) the latent handwriting-style with the variational
            # distribution q(z|x,y) = normal(mu(x,y),sigma(x,y))
            mu, sigma = self.encoder_z.forward(xs, ys)
            zs = pyro.sample("z", dist.Normal(mu, sigma).reshape(extra_event_dims=1)) 
開發者ID:jinserk,項目名稱:pytorch-asr,代碼行數:28,代碼來源:model.py

示例4: train_gp

# 需要導入模塊: import pyro [as 別名]
# 或者: from pyro import infer [as 別名]
def train_gp(args, dataset, gp_class):
	u, y = dataset.get_train_data(0, gp_class.name)  if args.nclt else dataset.get_test_data(1, gp_class.name) # this is only to have a correct dimension

	if gp_class.name == 'GpOdoFog':
		fnet = FNET(args, u.shape[2], args.kernel_dim)
		def fnet_fn(x):
			return pyro.module("FNET", fnet)(x)

		lik = gp.likelihoods.Gaussian(name='lik_f', variance=0.1*torch.ones(6, 1))
		# lik = MultiVariateGaussian(name='lik_f', dim=6) # if lower_triangular_constraint is implemented
		kernel = gp.kernels.Matern52(input_dim=args.kernel_dim,
		                               lengthscale=torch.ones(args.kernel_dim)).warp(iwarping_fn=fnet_fn)
		Xu = u[torch.arange(0, u.shape[0], step=int(u.shape[0]/args.num_inducing_point)).long()]
		gp_model = gp.models.VariationalSparseGP(u, torch.zeros(6, u.shape[0]), kernel, Xu,
		                                     num_data=dataset.num_data, likelihood=lik, mean_function=None,
		                                     name=gp_class.name, whiten=True, jitter=1e-3)
	else:
		hnet = HNET(args, u.shape[2], args.kernel_dim)
		def hnet_fn(x):
			return pyro.module("HNET", hnet)(x)
		lik = gp.likelihoods.Gaussian(name='lik_h', variance=0.1*torch.ones(9, 1))
		# lik = MultiVariateGaussian(name='lik_h', dim=9) # if lower_triangular_constraint is implemented
		kernel = gp.kernels.Matern52(input_dim=args.kernel_dim,
		                               lengthscale=torch.ones(args.kernel_dim)).warp(iwarping_fn=hnet_fn)
		Xu = u[torch.arange(0, u.shape[0], step=int(u.shape[0]/args.num_inducing_point)).long()]
		gp_model = gp.models.VariationalSparseGP(u, torch.zeros(9, u.shape[0]), kernel, Xu,
		                                     num_data=dataset.num_data, likelihood=lik, mean_function=None,
		                                     name=gp_class.name, whiten=True, jitter=1e-4)

	gp_instante = gp_class(args, gp_model, dataset)
	args.mate = preprocessing(args, dataset, gp_instante)

	optimizer = optim.ClippedAdam({"lr": args.lr, "lrd": args.lr_decay})
	svi = infer.SVI(gp_instante.model, gp_instante.guide, optimizer, infer.Trace_ELBO())

	print("Start of training " + dataset.name + ", " + gp_class.name)
	start_time = time.time()
	for epoch in range(1, args.epochs + 1):
		train_loop(dataset, gp_instante, svi, epoch)
		if epoch == 10:
			if gp_class.name == 'GpOdoFog':
				gp_instante.gp_f.jitter = 1e-4
			else:
				gp_instante.gp_h.jitter = 1e-4

	save_gp(args, gp_instante, fnet) if gp_class.name == 'GpOdoFog' else save_gp(args, gp_instante, hnet) 
開發者ID:CAOR-MINES-ParisTech,項目名稱:lwoi,代碼行數:48,代碼來源:train.py


注:本文中的pyro.infer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。