當前位置: 首頁>>代碼示例>>Python>>正文


Python pyprind.prog_bar方法代碼示例

本文整理匯總了Python中pyprind.prog_bar方法的典型用法代碼示例。如果您正苦於以下問題:Python pyprind.prog_bar方法的具體用法?Python pyprind.prog_bar怎麽用?Python pyprind.prog_bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyprind的用法示例。


在下文中一共展示了pyprind.prog_bar方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_generator

# 需要導入模塊: import pyprind [as 別名]
# 或者: from pyprind import prog_bar [as 別名]
def test_generator():
    for i in pyprind.prog_bar(range(n), stream=sys.stdout):
        time.sleep(sleeptime) 
開發者ID:rasbt,項目名稱:pyprind,代碼行數:5,代碼來源:test_progress_bar.py

示例2: __new__

# 需要導入模塊: import pyprind [as 別名]
# 或者: from pyprind import prog_bar [as 別名]
def __new__(cls, iterable=None, desc=None, total=None, leave=True,
                backend=None, verbose=True):
        if backend is None:
            backend = Progressbar.backend

        if not verbose:
            backend = "hide"

        if backend == "tqdm":
            from tqdm import tqdm
            return tqdm(iterable=iterable, desc=desc, total=total, leave=leave,
                        ascii=True, ncols=80, file=sys.stdout,
                        bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed"
                                   "}<{remaining}{postfix}]") # remove rate_fmt
        elif backend == "tqdm_notebook":
            from tqdm import tqdm_notebook
            return tqdm_notebook(iterable=iterable, desc=desc, total=total,
                                 leave=leave)
        elif backend == "pyprind":
            from pyprind import ProgBar, prog_bar
            ProgBar._adjust_width = lambda self: None  # keep constant width
            if iterable is None:
                return ProgBar(total, title=desc, stream=1)
            else:
                return prog_bar(iterable, title=desc, stream=1,
                                iterations=total)
        elif backend == "hide":
            return NoProgressbar(iterable=iterable)
        else:
            raise NotImplementedError("unknown backend") 
開發者ID:vortex-exoplanet,項目名稱:VIP,代碼行數:32,代碼來源:utils_conf.py

示例3: train

# 需要導入模塊: import pyprind [as 別名]
# 或者: from pyprind import prog_bar [as 別名]
def train(self):

        memory = ReplayMem(
            obs_dim=self.env.observation_space.flat_dim,
            act_dim=self.env.action_space.flat_dim,
            memory_size=self.memory_size)

        itr = 0
        path_length = 0
        path_return = 0
        end = False
        obs = self.env.reset()

        for epoch in range(self.n_epochs):
            logger.push_prefix("epoch #%d | " % epoch)
            logger.log("Training started")
            for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
                # run the policy
                if end:
                    # reset the environment and stretegy when an episode ends
                    obs = self.env.reset()
                    self.strategy.reset()
                    # self.policy.reset()
                    self.strategy_path_returns.append(path_return)
                    path_length = 0
                    path_return = 0
                # note action is sampled from the policy not the target policy
                act = self.strategy.get_action(obs, self.policy)
                nxt, rwd, end, _ = self.env.step(act)

                path_length += 1
                path_return += rwd

                if not end and path_length >= self.max_path_length:
                    end = True
                    if self.include_horizon_terminal:
                        memory.add_sample(obs, act, rwd, end)
                else:
                    memory.add_sample(obs, act, rwd, end)

                obs = nxt

                if memory.size >= self.memory_start_size:
                    for update_time in range(self.n_updates_per_sample):
                        batch = memory.get_batch(self.batch_size)
                        self.do_update(itr, batch)

                itr += 1

            logger.log("Training finished")
            if memory.size >= self.memory_start_size:
                self.evaluate(epoch, memory)
            logger.dump_tabular(with_prefix=False)
            logger.pop_prefix()

        # self.env.terminate()
        # self.policy.terminate() 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:59,代碼來源:ddpg.py

示例4: train

# 需要導入模塊: import pyprind [as 別名]
# 或者: from pyprind import prog_bar [as 別名]
def train(self):

        memory = ReplayMem(
            obs_dim=self.env.observation_space.flat_dim,
            act_dim=self.env.action_space.flat_dim,
            memory_size=self.memory_size)

        itr = 0
        path_length = 0
        path_return = 0
        end = False
        obs = self.env.reset()

        for epoch in xrange(self.n_epochs):
            logger.push_prefix("epoch #%d | " % epoch)
            logger.log("Training started")
            for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
                # run the policy
                if end:
                    # reset the environment and stretegy when an episode ends
                    obs = self.env.reset()
                    self.strategy.reset()
                    # self.policy.reset()
                    self.strategy_path_returns.append(path_return)
                    path_length = 0
                    path_return = 0
                # note action is sampled from the policy not the target policy
                act = self.strategy.get_action(obs, self.policy)
                nxt, rwd, end, _ = self.env.step(act)

                path_length += 1
                path_return += rwd

                if not end and path_length >= self.max_path_length:
                    end = True
                    if self.include_horizon_terminal:
                        memory.add_sample(obs, act, rwd, end)
                else:
                    memory.add_sample(obs, act, rwd, end)

                obs = nxt

                if memory.size >= self.memory_start_size:
                    for update_time in xrange(self.n_updates_per_sample):
                        batch = memory.get_batch(self.batch_size)
                        self.do_update(itr, batch)

                itr += 1

            logger.log("Training finished")
            if memory.size >= self.memory_start_size:
                self.evaluate(epoch, memory)
            logger.dump_tabular(with_prefix=False)
            logger.pop_prefix()

        # self.env.terminate()
        # self.policy.terminate() 
開發者ID:mahyarnajibi,項目名稱:SNIPER-mxnet,代碼行數:59,代碼來源:ddpg.py


注:本文中的pyprind.prog_bar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。