本文整理匯總了Python中pyomo.environ.Objective方法的典型用法代碼示例。如果您正苦於以下問題:Python environ.Objective方法的具體用法?Python environ.Objective怎麽用?Python environ.Objective使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pyomo.environ
的用法示例。
在下文中一共展示了environ.Objective方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: declareObjective
# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Objective [as 別名]
def declareObjective(self, pyM):
"""
Declare the objective function by obtaining the contributions to the objective function from all modeling
classes. Currently, the only objective function which can be selected is the sum of the total annual cost of all
components.
:param pyM: a pyomo ConcreteModel instance which contains parameters, sets, variables,
constraints and objective required for the optimization set up and solving.
:type pyM: pyomo ConcreteModel
"""
utils.output('Declaring objective function...', self.verbose, 0)
def objective(pyM):
TAC = sum(mdl.getObjectiveFunctionContribution(self, pyM) for mdl in self.componentModelingDict.values())
return TAC
pyM.Obj = pyomo.Objective(rule=objective)
示例2: l_objective
# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Objective [as 別名]
def l_objective(model,objective=None, sense=minimize):
"""
A replacement for pyomo's Objective that quickly builds linear
objectives.
Instead of
model.objective = Objective(expr=sum(vars[i]*coeffs[i] for i in index)+constant)
call instead
l_objective(model,objective,sense)
where objective is an LExpression.
Variables may be repeated with different coefficients, which pyomo
will sum up.
Parameters
----------
model : pyomo.environ.ConcreteModel
objective : LExpression
sense : minimize / maximize
"""
if objective is None:
objective = LExpression()
#initialise with a dummy
model.objective = Objective(expr = 0., sense=sense)
model.objective._expr = _build_sum_expression(objective.variables, constant=objective.constant)
示例3: Model_Resolution
# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Objective [as 別名]
def Model_Resolution(model,datapath="Example/data.dat"):
'''
This function creates the model and call Pyomo to solve the instance of the proyect
:param model: Pyomo model as defined in the Model_creation library
:param datapath: path to the input data file
:return: The solution inside an object call instance.
'''
from Constraints import Net_Present_Cost, Solar_Energy,State_of_Charge,\
Maximun_Charge, Minimun_Charge, Max_Power_Battery_Charge, Max_Power_Battery_Discharge, Max_Bat_in, Max_Bat_out, \
Financial_Cost, Energy_balance, Maximun_Lost_Load,Scenario_Net_Present_Cost, Scenario_Lost_Load_Cost, \
Initial_Inversion, Operation_Maintenance_Cost, Total_Finalcial_Cost, Battery_Reposition_Cost, Maximun_Diesel_Energy, Diesel_Comsuption,Diesel_Cost_Total
# OBJETIVE FUNTION:
model.ObjectiveFuntion = Objective(rule=Net_Present_Cost, sense=minimize)
# CONSTRAINTS
#Energy constraints
model.EnergyBalance = Constraint(model.scenario,model.periods, rule=Energy_balance)
model.MaximunLostLoad = Constraint(model.scenario, rule=Maximun_Lost_Load) # Maximum permissible lost load
model.ScenarioLostLoadCost = Constraint(model.scenario, rule=Scenario_Lost_Load_Cost)
# PV constraints
model.SolarEnergy = Constraint(model.scenario, model.periods, rule=Solar_Energy) # Energy output of the solar panels
# Battery constraints
model.StateOfCharge = Constraint(model.scenario, model.periods, rule=State_of_Charge) # State of Charge of the battery
model.MaximunCharge = Constraint(model.scenario, model.periods, rule=Maximun_Charge) # Maximun state of charge of the Battery
model.MinimunCharge = Constraint(model.scenario, model.periods, rule=Minimun_Charge) # Minimun state of charge
model.MaxPowerBatteryCharge = Constraint(rule=Max_Power_Battery_Charge) # Max power battery charge constraint
model.MaxPowerBatteryDischarge = Constraint(rule=Max_Power_Battery_Discharge) # Max power battery discharge constraint
model.MaxBatIn = Constraint(model.scenario, model.periods, rule=Max_Bat_in) # Minimun flow of energy for the charge fase
model.Maxbatout = Constraint(model.scenario, model.periods, rule=Max_Bat_out) #minimun flow of energy for the discharge fase
# Diesel Generator constraints
model.MaximunDieselEnergy = Constraint(model.scenario, model.periods, rule=Maximun_Diesel_Energy) # Maximun energy output of the diesel generator
model.DieselComsuption = Constraint(model.scenario, model.periods, rule=Diesel_Comsuption) # Diesel comsuption
model.DieselCostTotal = Constraint(model.scenario, rule=Diesel_Cost_Total)
# Financial Constraints
model.FinancialCost = Constraint(rule=Financial_Cost) # Financial cost
model.ScenarioNetPresentCost = Constraint(model.scenario, rule=Scenario_Net_Present_Cost)
model.InitialInversion = Constraint(rule=Initial_Inversion)
model.OperationMaintenanceCost = Constraint(rule=Operation_Maintenance_Cost)
model.TotalFinalcialCost = Constraint(rule=Total_Finalcial_Cost)
model.BatteryRepositionCost = Constraint(rule=Battery_Reposition_Cost)
instance = model.create_instance(datapath) # load parameters
opt = SolverFactory('cplex') # Solver use during the optimization
results = opt.solve(instance, tee=True) # Solving a model instance
instance.solutions.load_from(results) # Loading solution into instance
return instance
#\
示例4: Model_Resolution_Integer
# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Objective [as 別名]
def Model_Resolution_Integer(model,datapath="Example/data_Integer.dat"):
'''
This function creates the model and call Pyomo to solve the instance of the proyect
:param model: Pyomo model as defined in the Model_creation library
:return: The solution inside an object call instance.
'''
from Constraints_Integer import Net_Present_Cost, Solar_Energy, State_of_Charge, Maximun_Charge, \
Minimun_Charge, Max_Power_Battery_Charge, Max_Power_Battery_Discharge, Max_Bat_in, Max_Bat_out, \
Financial_Cost, Energy_balance, Maximun_Lost_Load, Generator_Cost_1_Integer, \
Total_Cost_Generator_Integer, Initial_Inversion, Operation_Maintenance_Cost,Total_Finalcial_Cost,\
Battery_Reposition_Cost, Scenario_Lost_Load_Cost, Sceneario_Generator_Total_Cost, \
Scenario_Net_Present_Cost, Generator_Bounds_Min_Integer, Generator_Bounds_Max_Integer,Energy_Genarator_Energy_Max_Integer
# OBJETIVE FUNTION:
model.ObjectiveFuntion = Objective(rule=Net_Present_Cost, sense=minimize)
# CONSTRAINTS
#Energy constraints
model.EnergyBalance = Constraint(model.scenario,model.periods, rule=Energy_balance) # Energy balance
model.MaximunLostLoad = Constraint(model.scenario,rule=Maximun_Lost_Load) # Maximum permissible lost load
# PV constraints
model.SolarEnergy = Constraint(model.scenario,model.periods, rule=Solar_Energy) # Energy output of the solar panels
# Battery constraints
model.StateOfCharge = Constraint(model.scenario,model.periods, rule=State_of_Charge) # State of Charge of the battery
model.MaximunCharge = Constraint(model.scenario,model.periods, rule=Maximun_Charge) # Maximun state of charge of the Battery
model.MinimunCharge = Constraint(model.scenario,model.periods, rule=Minimun_Charge) # Minimun state of charge
model.MaxPowerBatteryCharge = Constraint(rule=Max_Power_Battery_Charge) # Max power battery charge constraint
model.MaxPowerBatteryDischarge = Constraint(rule=Max_Power_Battery_Discharge) # Max power battery discharge constraint
model.MaxBatIn = Constraint(model.scenario,model.periods, rule=Max_Bat_in) # Minimun flow of energy for the charge fase
model.Maxbatout = Constraint(model.scenario,model.periods, rule=Max_Bat_out) #minimun flow of energy for the discharge fase
#Diesel Generator constraints
model.GeneratorBoundsMin = Constraint(model.scenario,model.periods, rule=Generator_Bounds_Min_Integer)
model.GeneratorBoundsMax = Constraint(model.scenario,model.periods, rule=Generator_Bounds_Max_Integer)
model.GeneratorCost1 = Constraint(model.scenario, model.periods, rule=Generator_Cost_1_Integer)
model.EnergyGenaratorEnergyMax = Constraint(model.scenario,model.periods, rule=Energy_Genarator_Energy_Max_Integer)
model.TotalCostGenerator = Constraint(model.scenario, rule=Total_Cost_Generator_Integer)
# Financial Constraints
model.FinancialCost = Constraint(rule=Financial_Cost) # Financial cost
model.InitialInversion = Constraint(rule=Initial_Inversion)
model.OperationMaintenanceCost = Constraint(rule=Operation_Maintenance_Cost)
model.TotalFinalcialCost = Constraint(rule=Total_Finalcial_Cost)
model.BatteryRepositionCost = Constraint(rule=Battery_Reposition_Cost)
model.ScenarioLostLoadCost = Constraint(model.scenario, rule=Scenario_Lost_Load_Cost)
model.ScenearioGeneratorTotalCost = Constraint(model.scenario, rule=Sceneario_Generator_Total_Cost)
model.ScenarioNetPresentCost = Constraint(model.scenario, rule=Scenario_Net_Present_Cost)
instance = model.create_instance("Example/data_Integer.dat") # load parameters
opt = SolverFactory('cplex') # Solver use during the optimization
# opt.options['emphasis_memory'] = 'y'
# opt.options['node_select'] = 3
results = opt.solve(instance, tee=True,options_string="mipgap=0.07") # Solving a model instance
# instance.write(io_options={'emphasis_memory':True})
#options_string="mipgap=0.03", timelimit=1200
instance.solutions.load_from(results) # Loading solution into instance
return instance
示例5: Model_Resolution_Dispatch
# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Objective [as 別名]
def Model_Resolution_Dispatch(model,datapath="Example/data_Dispatch.dat"):
'''
This function creates the model and call Pyomo to solve the instance of the proyect
:param model: Pyomo model as defined in the Model_creation library
:return: The solution inside an object call instance.
'''
from Constraints_Dispatch import Net_Present_Cost, State_of_Charge, Maximun_Charge, \
Minimun_Charge, Max_Bat_in, Max_Bat_out, \
Energy_balance, Maximun_Lost_Load, Generator_Cost_1_Integer, \
Total_Cost_Generator_Integer, \
Scenario_Lost_Load_Cost, \
Generator_Bounds_Min_Integer, Generator_Bounds_Max_Integer,Energy_Genarator_Energy_Max_Integer
# OBJETIVE FUNTION:
model.ObjectiveFuntion = Objective(rule=Net_Present_Cost, sense=minimize)
# CONSTRAINTS
#Energy constraints
model.EnergyBalance = Constraint(model.periods, rule=Energy_balance) # Energy balance
model.MaximunLostLoad = Constraint(rule=Maximun_Lost_Load) # Maximum permissible lost load
# Battery constraints
model.StateOfCharge = Constraint(model.periods, rule=State_of_Charge) # State of Charge of the battery
model.MaximunCharge = Constraint(model.periods, rule=Maximun_Charge) # Maximun state of charge of the Battery
model.MinimunCharge = Constraint(model.periods, rule=Minimun_Charge) # Minimun state of charge
model.MaxBatIn = Constraint(model.periods, rule=Max_Bat_in) # Minimun flow of energy for the charge fase
model.Maxbatout = Constraint(model.periods, rule=Max_Bat_out) #minimun flow of energy for the discharge fase
#Diesel Generator constraints
model.GeneratorBoundsMin = Constraint(model.periods, rule=Generator_Bounds_Min_Integer)
model.GeneratorBoundsMax = Constraint(model.periods, rule=Generator_Bounds_Max_Integer)
model.GeneratorCost1 = Constraint(model.periods, rule=Generator_Cost_1_Integer)
model.EnergyGenaratorEnergyMax = Constraint(model.periods, rule=Energy_Genarator_Energy_Max_Integer)
model.TotalCostGenerator = Constraint(rule=Total_Cost_Generator_Integer)
# Financial Constraints
model.ScenarioLostLoadCost = Constraint(rule=Scenario_Lost_Load_Cost)
instance = model.create_instance("Example/data_dispatch.dat") # load parameters
opt = SolverFactory('cplex') # Solver use during the optimization
# opt.options['emphasis_memory'] = 'y'
# opt.options['node_select'] = 3
results = opt.solve(instance, tee=True,options_string="mipgap=0.03") # Solving a model instance
# instance.write(io_options={'emphasis_memory':True})
#options_string="mipgap=0.03", timelimit=1200
instance.solutions.load_from(results) # Loading solution into instance
return instance