當前位置: 首頁>>代碼示例>>Python>>正文


Python environ.Constraint方法代碼示例

本文整理匯總了Python中pyomo.environ.Constraint方法的典型用法代碼示例。如果您正苦於以下問題:Python environ.Constraint方法的具體用法?Python environ.Constraint怎麽用?Python environ.Constraint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyomo.environ的用法示例。


在下文中一共展示了environ.Constraint方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: connectSOCs

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def connectSOCs(self, pyM, esM):
        """
        Declare the constraint for connecting the state of charge with the charge and discharge operation:
        the change in the state of charge between two points in time has to match the values of charging and
        discharging (considering the efficiencies of these processes) within the time step in between minus
        the self-discharge of the storage.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        SOC = getattr(pyM, 'stateOfCharge_' + abbrvName)
        chargeOp, dischargeOp = getattr(pyM, 'chargeOp_' + abbrvName), getattr(pyM, 'dischargeOp_' + abbrvName)
        opVarSet = getattr(pyM, 'operationVarSet_' + abbrvName)

        def connectSOCs(pyM, loc, compName, p, t):
            return (SOC[loc, compName, p, t+1] - SOC[loc, compName, p, t] *
                    (1 - compDict[compName].selfDischarge) ** esM.hoursPerTimeStep ==
                    chargeOp[loc, compName, p, t] * compDict[compName].chargeEfficiency -
                    dischargeOp[loc, compName, p, t] / compDict[compName].dischargeEfficiency)
        setattr(pyM, 'ConstrConnectSOC_' + abbrvName, pyomo.Constraint(opVarSet, pyM.timeSet, rule=connectSOCs)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:26,代碼來源:storage.py

示例2: cyclicLifetime

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def cyclicLifetime(self, pyM, esM):
        """
        Declare the constraint for limiting the number of full cycle equivalents to stay below cyclic lifetime.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        chargeOp, capVar = getattr(pyM, 'chargeOp_' + abbrvName), getattr(pyM, 'cap_' + abbrvName)
        capVarSet = getattr(pyM, 'designDimensionVarSet_' + abbrvName)

        def cyclicLifetime(pyM, loc, compName):
            return (sum(chargeOp[loc, compName, p, t] * esM.periodOccurrences[p] for p, t in pyM.timeSet) /
                    esM.numberOfYears <= capVar[loc, compName] *
                    (compDict[compName].stateOfChargeMax - compDict[compName].stateOfChargeMin) *
                    compDict[compName].cyclicLifetime / compDict[compName].economicLifetime[loc]
                    if compDict[compName].cyclicLifetime is not None else pyomo.Constraint.Skip)
        setattr(pyM, 'ConstrCyclicLifetime_' + abbrvName, pyomo.Constraint(capVarSet, rule=cyclicLifetime)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:23,代碼來源:storage.py

示例3: intraSOCstart

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def intraSOCstart(self, pyM, esM):
        """
        Declare the constraint that the (virtual) state of charge at the beginning of a typical period is zero.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance
        """
        abbrvName = self.abbrvName
        opVarSet = getattr(pyM, 'operationVarSet_' + abbrvName)
        SOC = getattr(pyM, 'stateOfCharge_' + abbrvName)

        def intraSOCstart(pyM, loc, compName, p):
            return SOC[loc, compName, p, 0] == 0
        setattr(pyM, 'ConstrSOCPeriodStart_' + abbrvName,
                pyomo.Constraint(opVarSet, esM.typicalPeriods, rule=intraSOCstart)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:20,代碼來源:storage.py

示例4: operationModeSOC

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def operationModeSOC(self, pyM, esM):
        """
        Declare the constraint that the state of charge [commodityUnit*h] is limited by the installed capacity
        [commodityUnit*h] and the relative maximum state of charge [-].

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        opVar, capVar = getattr(pyM, 'stateOfCharge_' + abbrvName), getattr(pyM, 'cap_' + abbrvName)
        constrSet = getattr(pyM, 'designDimensionVarSet_' + abbrvName)

        # Operation [commodityUnit*h] limited by the installed capacity [commodityUnit*h] multiplied by the relative
        # maximum state of charge.
        def op(pyM, loc, compName, p, t):
            return (opVar[loc, compName, p, t] <=
                    compDict[compName].stateOfChargeMax * capVar[loc, compName])
        setattr(pyM, 'ConstrSOCMaxPrecise_' + abbrvName, pyomo.Constraint(constrSet, pyM.timeSet, rule=op)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:23,代碼來源:storage.py

示例5: operationMode1_2dim

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def operationMode1_2dim(self, pyM, esM, constrName, constrSetName, opVarName):
        """
        Declare the constraint that the operation [commodityUnit*hour] is limited by the installed
        capacity [commodityUnit] multiplied by the hours per time step.
        Since the flow should either go in one direction or the other, the limitation can be enforced on the sum
        of the forward and backward flow over the line. This leads to one of the flow variables being set to zero
        if a basic solution is obtained during optimization.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        opVar, capVar = getattr(pyM, opVarName + '_' + abbrvName), getattr(pyM, 'cap_' + abbrvName)
        constrSet1 = getattr(pyM, constrSetName + '1_' + abbrvName)

        def op1(pyM, loc, compName, p, t):
            return opVar[loc, compName, p, t] + opVar[compDict[compName]._mapI[loc], compName, p, t] <= \
                   capVar[loc, compName] * esM.hoursPerTimeStep
        setattr(pyM, constrName + '_' + abbrvName, pyomo.Constraint(constrSet1, pyM.timeSet, rule=op1)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:24,代碼來源:transmission.py

示例6: rampUpMax

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def rampUpMax(self, pyM, esM):
            """
            Ensure that conversion unit is not ramping up too fast by implementing a maximum ramping rate as share of the installed capacity.
            

            :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
            :type pyM: pyomo Concrete Model
            """
            compDict, abbrvName = self.componentsDict, self.abbrvName
            
            opVar= getattr(pyM, 'op_' + abbrvName)
            capVar= getattr(pyM, 'cap_' + abbrvName)
            
            constrSetRampUpMax = getattr(pyM,'opConstrSet' + 'rampUpMax_' + abbrvName)
            numberOfTimeSteps = esM.numberOfTimeSteps
    
            def rampUpMax(pyM, loc, compName, p, t):
                rampRateMax = getattr(compDict[compName], 'rampUpMax')
                if (t>=1): # avoid to set constraints twice
                    return (opVar[loc, compName, p, t]-opVar[loc, compName, p, t-1] <= rampRateMax*capVar[loc, compName])
                else:
                    return (opVar[loc, compName, p, t]-opVar[loc, compName, p, numberOfTimeSteps-1] <= rampRateMax*capVar[loc, compName])
            setattr(pyM, 'ConstrRampUpMax_' + abbrvName, pyomo.Constraint(constrSetRampUpMax, pyM.timeSet, rule=rampUpMax)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:25,代碼來源:conversionDynamic.py

示例7: rampDownMax

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def rampDownMax(self, pyM, esM):
            """
            Ensure that conversion unit is not ramping down too fast by implementing a maximum ramping rate as share of the installed capacity.
            
    
            :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
            :type pyM: pyomo Concrete Model
            """
            compDict, abbrvName = self.componentsDict, self.abbrvName
            
            opVar= getattr(pyM, 'op_' + abbrvName)
            capVar= getattr(pyM, 'cap_' + abbrvName)
            
            constrSetRampDownMax = getattr(pyM,'opConstrSet' + 'rampDownMax_' + abbrvName)
            numberOfTimeSteps = esM.numberOfTimeSteps
    
            def rampDownMax(pyM, loc, compName, p, t):
                rampRateMax = getattr(compDict[compName], 'rampDownMax')
                if (t>=1): # avoid to set constraints twice
                    return (opVar[loc, compName, p, t-1]-opVar[loc, compName, p, t] <= rampRateMax*capVar[loc, compName])
                else:
                    return (opVar[loc, compName, p, numberOfTimeSteps-1]-opVar[loc, compName, p, t] <= rampRateMax*capVar[loc, compName])
            setattr(pyM, 'ConstrRampDownMax_' + abbrvName, pyomo.Constraint(constrSetRampDownMax, pyM.timeSet, rule=rampDownMax)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:25,代碼來源:conversionDynamic.py

示例8: segmentBigM

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def segmentBigM(self, pyM):
        """
        Ensure that the continuous segment variables are zero if the respective binary variable is zero and unlimited otherwise.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo Concrete Model
        """

        compDict, abbrvName = self.componentsDict, self.abbrvName
        discretizationSegmentConVar = getattr(pyM, 'discretizationSegmentCon_' + self.abbrvName)
        discretizationSegmentBinVar = getattr(pyM, 'discretizationSegmentBin_' + self.abbrvName)
        discretizationSegmentVarSet = getattr(pyM, 'discretizationSegmentVarSet_' + self.abbrvName)

        def segmentBigM(pyM, loc, compName, discretStep, p, t):
            return discretizationSegmentConVar[loc, compName, discretStep, p, t] <= discretizationSegmentBinVar[loc, compName, discretStep, p, t] * compDict[compName].bigM
        setattr(pyM, 'ConstrSegmentBigM_' + abbrvName,  pyomo.Constraint(discretizationSegmentVarSet, pyM.timeSet, rule=segmentBigM)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:18,代碼來源:conversionPartLoad.py

示例9: segmentCapacityConstraint

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def segmentCapacityConstraint(self, pyM, esM):
        """
        Ensure that the continuous segment variables are in sum equal to the installed capacity of the component.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo Concrete Model
        """

        compDict, abbrvName = self.componentsDict, self.abbrvName
        discretizationSegmentConVar = getattr(pyM, 'discretizationSegmentCon_' + self.abbrvName)
        capVar = getattr(pyM, 'cap_' + abbrvName)
        opVarSet = getattr(pyM, 'operationVarSet_' + abbrvName)

        def segmentCapacityConstraint(pyM, loc, compName, p, t):
            return sum(discretizationSegmentConVar[loc, compName, discretStep, p, t] for discretStep in range(compDict[compName].nSegments)) == esM.hoursPerTimeStep * capVar[loc, compName]
        setattr(pyM, 'ConstrSegmentCapacity_' + abbrvName,  pyomo.Constraint(opVarSet, pyM.timeSet, rule=segmentCapacityConstraint)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:18,代碼來源:conversionPartLoad.py

示例10: pointSOS2

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def pointSOS2(self, pyM):
        """
        Ensure that only two consecutive point variables are non-zero while all other point variables are fixed to zero.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo Concrete Model
        """

        compDict, abbrvName = self.componentsDict, self.abbrvName
        discretizationPointConVar = getattr(pyM, 'discretizationPoint_' + self.abbrvName)
        discretizationSegmentConVar = getattr(pyM, 'discretizationSegmentCon_' + self.abbrvName)
        discretizationPointVarSet = getattr(pyM, 'discretizationPointVarSet_' + self.abbrvName)

        def pointSOS2(pyM, loc, compName, discretStep, p, t):
            points = list(range(compDict[compName].nSegments+1))
            segments = list(range(compDict[compName].nSegments))

            if discretStep == points[0]:
                return discretizationPointConVar[loc, compName, points[0], p, t] <= discretizationSegmentConVar[loc, compName, segments[0], p, t]
            elif discretStep == points[-1]:
                return discretizationPointConVar[loc, compName, points[-1], p, t] <= discretizationSegmentConVar[loc, compName, segments[-1], p, t]
            else:
                return discretizationPointConVar[loc, compName, discretStep, p, t] <= discretizationSegmentConVar[loc, compName, discretStep-1, p, t] + discretizationSegmentConVar[loc, compName, discretStep, p, t]

        setattr(pyM, 'ConstrPointSOS2_' + abbrvName,  pyomo.Constraint(discretizationPointVarSet, pyM.timeSet, rule=pointSOS2)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:27,代碼來源:conversionPartLoad.py

示例11: partLoadOperationOutput

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def partLoadOperationOutput(self, pyM):
        """
        Set the required input of a conversion process dependent on the part load efficency.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo Concrete Model
        """

        compDict, abbrvName = self.componentsDict, self.abbrvName
        discretizationPointConVar = getattr(pyM, 'discretizationPoint_' + self.abbrvName)
        opVar, opVarSet = getattr(pyM, 'op_' + abbrvName), getattr(pyM, 'operationVarSet_' + abbrvName)

        def partLoadOperationOutput(pyM, loc, compName, p, t):        
            nPoints = compDict[compName].nSegments+1
            ### TODO Store the part load levels seperately and do not use 
            # print(list(compDict[compName].discretizedPartLoad.keys()))
            return opVar[loc, compName, p, t] == sum(discretizationPointConVar[loc, compName, discretStep, p, t] * \
                                                 compDict[compName].discretizedPartLoad[list(compDict[compName].discretizedPartLoad.keys())[0]]['xSegments'][discretStep] \
                                                 for discretStep in range(nPoints))
        setattr(pyM, 'ConstrpartLoadOperationOutput_' + abbrvName,  pyomo.Constraint(opVarSet, pyM.timeSet, rule=partLoadOperationOutput)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:22,代碼來源:conversionPartLoad.py

示例12: powerFlowDC

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def powerFlowDC(self, pyM):
        """
        Ensure that the flow between two locations is equal to the difference between the phase angle variables at
        these locations divided by the reactance of the line between these locations.

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo Concrete Model
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        phaseAngleVar = getattr(pyM, 'phaseAngle_' + self.abbrvName)
        opVar, opVarSet = getattr(pyM, 'op_' + abbrvName), getattr(pyM, 'operationVarSet_' + abbrvName)

        def powerFlowDC(pyM, loc, compName, p, t):
            node1, node2 = compDict[compName]._mapC[loc]
            return (opVar[loc, compName, p, t] - opVar[compDict[compName]._mapI[loc], compName, p, t] ==
                    (phaseAngleVar[node1, compName, p, t]-phaseAngleVar[node2, compName, p, t])/
                    compDict[compName].reactances[loc])
        setattr(pyM, 'ConstrpowerFlowDC_' + abbrvName,  pyomo.Constraint(opVarSet, pyM.timeSet, rule=powerFlowDC)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:20,代碼來源:lopf.py

示例13: yearlyLimitationConstraint

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def yearlyLimitationConstraint(self, pyM, esM):
        """
        Limit annual commodity imports/exports over the energySystemModel's boundaries for one or multiple
        Source/Sink components.

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance

        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        opVar = getattr(pyM, 'op_' + abbrvName)
        limitDict = getattr(pyM, 'yearlyCommodityLimitationDict_' + abbrvName)

        def yearlyLimitationConstraint(pyM, key):
            sumEx = -sum(opVar[loc, compName, p, t] * compDict[compName].sign *
                         esM.periodOccurrences[p]/esM.numberOfYears
                         for loc, compName, p, t in opVar if compName in limitDict[key][1])
            sign = limitDict[key][0]/abs(limitDict[key][0]) if limitDict[key][0] != 0 else 1
            return sign * sumEx <= sign * limitDict[key][0]
        setattr(pyM, 'ConstrYearlyLimitation_' + abbrvName,
                pyomo.Constraint(limitDict.keys(), rule=yearlyLimitationConstraint)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:25,代碼來源:sourceSink.py

示例14: designBinFix

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def designBinFix(self, pyM):
        """ 
        Set, if applicable, the installed capacities of a component. 
        
        :param pyM: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pyM: pyomo ConcreteModel
        """
        compDict, abbrvName, dim = self.componentsDict, self.abbrvName, self.dimension
        designBinVar = getattr(pyM, 'designBin_' + abbrvName)
        designBinVarSet = getattr(pyM, 'designDecisionVarSet_' + abbrvName)

        def designBinFix(pyM, loc, compName):
            return (designBinVar[loc, compName] == compDict[compName].isBuiltFix[loc]
                    if compDict[compName].isBuiltFix is not None else pyomo.Constraint.Skip)
        setattr(pyM, 'ConstrDesignBinFix_' + abbrvName, pyomo.Constraint(designBinVarSet, rule=designBinFix))

    ####################################################################################################################
    #                               Functions for declaring time dependent constraints                                 #
    #################################################################################################################### 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:21,代碼來源:component.py

示例15: operationMode1

# 需要導入模塊: from pyomo import environ [as 別名]
# 或者: from pyomo.environ import Constraint [as 別名]
def operationMode1(self, pyM, esM, constrName, constrSetName, opVarName, factorName=None, isStateOfCharge=False):
        """
        Define operation mode 1. The operation [commodityUnit*h] is limited by the installed capacity in:\n
        * [commodityUnit*h] (for storages) or in
        * [commodityUnit] multiplied by the hours per time step (else).\n
        An additional factor can limited the operation further.
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        opVar, capVar = getattr(pyM, opVarName + '_' + abbrvName), getattr(pyM, 'cap_' + abbrvName)
        constrSet1 = getattr(pyM, constrSetName + '1_' + abbrvName)
        factor1 = 1 if isStateOfCharge else esM.hoursPerTimeStep

        def op1(pyM, loc, compName, p, t):
            factor2 = 1 if factorName is None else getattr(compDict[compName], factorName)
            return opVar[loc, compName, p, t] <= factor1 * factor2 * capVar[loc, compName]
        setattr(pyM, constrName + '1_' + abbrvName, pyomo.Constraint(constrSet1, pyM.timeSet, rule=op1)) 
開發者ID:FZJ-IEK3-VSA,項目名稱:FINE,代碼行數:18,代碼來源:component.py


注:本文中的pyomo.environ.Constraint方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。