當前位置: 首頁>>代碼示例>>Python>>正文


Python pynvml.nvmlDeviceGetMemoryInfo方法代碼示例

本文整理匯總了Python中pynvml.nvmlDeviceGetMemoryInfo方法的典型用法代碼示例。如果您正苦於以下問題:Python pynvml.nvmlDeviceGetMemoryInfo方法的具體用法?Python pynvml.nvmlDeviceGetMemoryInfo怎麽用?Python pynvml.nvmlDeviceGetMemoryInfo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pynvml的用法示例。


在下文中一共展示了pynvml.nvmlDeviceGetMemoryInfo方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: getGPUUsage

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def getGPUUsage():
    try:
        pynvml.nvmlInit()
        count = pynvml.nvmlDeviceGetCount()
        if count == 0:
            return None

        result = {"driver": pynvml.nvmlSystemGetDriverVersion(),
                  "gpu_count": int(count)
                  }
        i = 0
        gpuData = []
        while i<count:
            handle = pynvml.nvmlDeviceGetHandleByIndex(i)
            mem = pynvml.nvmlDeviceGetMemoryInfo(handle)
            gpuData.append({"device_num": i, "name": pynvml.nvmlDeviceGetName(handle), "total": round(float(mem.total)/1000000000, 2), "used": round(float(mem.used)/1000000000, 2)})
            i = i+1

        result["devices"] = jsonpickle.encode(gpuData, unpicklable=False)
    except Exception as e:
        result = {"driver": "No GPU!", "gpu_count": 0, "devices": []}

    return result 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:25,代碼來源:sysinfo.py

示例2: gpu_info

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def gpu_info(self):
        # pip install nvidia-ml-py3
        if len(self.gpu_ids) >= 0 and torch.cuda.is_available():
            try:
                import pynvml
                pynvml.nvmlInit()
                self.config_dic['gpu_driver_version'] = pynvml.nvmlSystemGetDriverVersion()
                for gpu_id in self.gpu_ids:
                    handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
                    gpu_id_name = "gpu%s" % gpu_id
                    mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
                    gpu_utilize = pynvml.nvmlDeviceGetUtilizationRates(handle)
                    self.config_dic['%s_device_name' % gpu_id_name] = pynvml.nvmlDeviceGetName(handle)
                    self.config_dic['%s_mem_total' % gpu_id_name] = gpu_mem_total = round(mem_info.total / 1024 ** 3, 2)
                    self.config_dic['%s_mem_used' % gpu_id_name] = gpu_mem_used = round(mem_info.used / 1024 ** 3, 2)
                    # self.config_dic['%s_mem_free' % gpu_id_name] = gpu_mem_free = mem_info.free // 1024 ** 2
                    self.config_dic['%s_mem_percent' % gpu_id_name] = round((gpu_mem_used / gpu_mem_total) * 100, 1)
                    self._set_dict_smooth('%s_utilize_gpu' % gpu_id_name, gpu_utilize.gpu, 0.8)
                    # self.config_dic['%s_utilize_gpu' % gpu_id_name] = gpu_utilize.gpu
                    # self.config_dic['%s_utilize_memory' % gpu_id_name] = gpu_utilize.memory

                pynvml.nvmlShutdown()
            except Exception as e:
                print(e) 
開發者ID:dingguanglei,項目名稱:jdit,代碼行數:26,代碼來源:super.py

示例3: _get_vram

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def _get_vram(self):
        """ Obtain the total VRAM in Megabytes for each connected GPU.

        Returns
        -------
        list
             List of floats containing the total amount of VRAM in Megabytes for each connected GPU
             as corresponding to the values in :attr:`_handles
        """
        self._initialize()
        if self._device_count == 0:
            vram = list()
        elif self._is_plaidml:
            vram = self._plaid.vram
        elif IS_MACOS:
            vram = [pynvx.cudaGetMemTotal(handle, ignore=True) / (1024 * 1024)
                    for handle in self._handles]
        else:
            vram = [pynvml.nvmlDeviceGetMemoryInfo(handle).total /
                    (1024 * 1024)
                    for handle in self._handles]
        self._log("debug", "GPU VRAM: {}".format(vram))
        return vram 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:25,代碼來源:gpu_stats.py

示例4: __query_mem

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def __query_mem(handle):
        """
        Query information on the memory of a GPU.

        Arguments:
            handle:
                NVML device handle.

        Returns:
            summaries (:obj:`dict`):
                Dictionary containing the memory values for ['mem_used', 'mem_free', 'mem_total'].
                All values are given in MiB as integers.
        """
        # Query information on the GPUs memory usage.
        info = nvml.nvmlDeviceGetMemoryInfo(handle)

        summaries = dict()
        bytes_mib = 1024.0 ** 2
        summaries['mem_used'] = int(info.used / bytes_mib)
        summaries['mem_free'] = int(info.free / bytes_mib)
        summaries['mem_total'] = int(info.total / bytes_mib)

        return summaries 
開發者ID:mdangschat,項目名稱:ctc-asr,代碼行數:25,代碼來源:hooks.py

示例5: get_appropriate_cuda

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def get_appropriate_cuda(task_scale='s'):
    if task_scale not in {'s','m','l'}:
        logger.info('task scale wrong!')
        exit(2)
    import pynvml
    pynvml.nvmlInit()
    total_cuda_num = pynvml.nvmlDeviceGetCount()
    for i in range(total_cuda_num):
        logger.info(i)
        handle = pynvml.nvmlDeviceGetHandleByIndex(i)  # 這裏的0是GPU id
        memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
        logger.info(i, 'mem:', memInfo.used / memInfo.total, 'util:',utilizationInfo.gpu)
        if memInfo.used / memInfo.total < 0.15 and utilizationInfo.gpu <0.2:
            logger.info(i,memInfo.used / memInfo.total)
            return 'cuda:'+str(i)

    if task_scale=='s':
        max_memory=2000
    elif task_scale=='m':
        max_memory=6000
    else:
        max_memory = 9000

    max_id = -1
    for i in range(total_cuda_num):
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)  # 這裏的0是GPU id
        memInfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        utilizationInfo = pynvml.nvmlDeviceGetUtilizationRates(handle)
        if max_memory < memInfo.free:
            max_memory = memInfo.free
            max_id = i

    if id == -1:
        logger.info('no appropriate gpu, wait!')
        exit(2)

    return 'cuda:'+str(max_id)

        # if memInfo.used / memInfo.total < 0.5:
        #     return 
開發者ID:fastnlp,項目名稱:fastNLP,代碼行數:43,代碼來源:utils.py

示例6: mem_used_for

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def mem_used_for(device_handle):
    """Get GPU device memory consumption in percent"""
    try:
        return pynvml.nvmlDeviceGetMemoryInfo(device_handle).used
    except pynvml.NVMLError:
        return None 
開發者ID:msalvaris,項目名稱:gpu_monitor,代碼行數:8,代碼來源:gpu_interface.py

示例7: mem_used_percent_for

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def mem_used_percent_for(device_handle):
    """Get GPU device memory consumption in percent"""
    try:
        memory_info = pynvml.nvmlDeviceGetMemoryInfo(device_handle)
        return memory_info.used * 100.0 / memory_info.total
    except pynvml.NVMLError:
        return None 
開發者ID:msalvaris,項目名稱:gpu_monitor,代碼行數:9,代碼來源:gpu_interface.py

示例8: _get_free_vram

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def _get_free_vram(self):
        """ Obtain the amount of VRAM that is available, in Megabytes, for each connected GPU.

        Returns
        -------
        list
             List of floats containing the amount of VRAM available, in Megabytes, for each
             connected GPU as corresponding to the values in :attr:`_handles

        Notes
        -----
        There is no useful way to get free VRAM on PlaidML. OpenCL loads and unloads VRAM as
        required, so this returns the total memory available per card for AMD cards, which us
        not particularly useful.

        """
        self._initialize()
        if self._is_plaidml:
            vram = self._plaid.vram
        elif IS_MACOS:
            vram = [pynvx.cudaGetMemFree(handle, ignore=True) / (1024 * 1024)
                    for handle in self._handles]
        else:
            vram = [pynvml.nvmlDeviceGetMemoryInfo(handle).free / (1024 * 1024)
                    for handle in self._handles]
        self._shutdown()
        self._log("debug", "GPU VRAM free: {}".format(vram))
        return vram 
開發者ID:deepfakes,項目名稱:faceswap,代碼行數:30,代碼來源:gpu_stats.py

示例9: query_gpu

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def query_gpu(handle: int) -> Dict:
    memory = pynvml.nvmlDeviceGetMemoryInfo(handle)  # in Bytes
    utilization = pynvml.nvmlDeviceGetUtilizationRates(handle)

    return {
        "gpu_{}_memory_free".format(handle): int(memory.free),
        "gpu_{}_memory_used".format(handle): int(memory.used),
        "gpu_{}_utilization".format(handle): utilization.gpu,
    } 
開發者ID:polyaxon,項目名稱:polyaxon,代碼行數:11,代碼來源:gpu_processor.py

示例10: _crawl_in_system

# 需要導入模塊: import pynvml [as 別名]
# 或者: from pynvml import nvmlDeviceGetMemoryInfo [as 別名]
def _crawl_in_system(self):
        '''
        nvidia-smi returns following: MEMORY, UTILIZATION, ECC, TEMPERATURE,
        POWER, CLOCK, COMPUTE, PIDS, PERFORMANCE, SUPPORTED_CLOCKS,
        PAGE_RETIREMENT, ACCOUNTING

        currently, following are requested based on dlaas requirements:
            utilization.gpu, utilization.memory,
            memory.total, memory.free, memory.used
        nvidia-smi --query-gpu=utilization.gpu,utilization.memory,\
            memory.total,memory.free,memory.used --format=csv,noheader,nounits
        '''

        if self._init_nvml() == -1:
            return

        self.inspect_arr = exec_dockerps()

        num_gpus = pynvml.nvmlDeviceGetCount()

        for gpuid in range(0, num_gpus):
            gpuhandle = pynvml.nvmlDeviceGetHandleByIndex(gpuid)
            temperature = pynvml.nvmlDeviceGetTemperature(
                gpuhandle, pynvml.NVML_TEMPERATURE_GPU)
            memory = pynvml.nvmlDeviceGetMemoryInfo(gpuhandle)
            mem_total = memory.total / 1024 / 1024
            mem_used = memory.used / 1024 / 1024
            mem_free = memory.free / 1024 / 1024
            power_draw = pynvml.nvmlDeviceGetPowerUsage(gpuhandle) / 1000
            power_limit = pynvml.nvmlDeviceGetEnforcedPowerLimit(
                gpuhandle) / 1000
            util = pynvml.nvmlDeviceGetUtilizationRates(gpuhandle)
            util_gpu = util.gpu
            util_mem = util.memory
            entry = {
                'utilization': {'gpu': util_gpu, 'memory': util_mem},
                'memory': {'total': mem_total, 'free': mem_free,
                           'used': mem_used},
                'temperature': temperature,
                'power': {'draw': power_draw, 'limit': power_limit}
            }
            key = self._get_feature_key(gpuhandle, gpuid)
            if gpuid == num_gpus - 1:
                self._shutdown_nvml()

            yield (key, entry, 'gpu')

        return 
開發者ID:cloudviz,項目名稱:agentless-system-crawler,代碼行數:50,代碼來源:gpu_host_crawler.py


注:本文中的pynvml.nvmlDeviceGetMemoryInfo方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。