本文整理匯總了Python中pymc3.summary方法的典型用法代碼示例。如果您正苦於以下問題:Python pymc3.summary方法的具體用法?Python pymc3.summary怎麽用?Python pymc3.summary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pymc3
的用法示例。
在下文中一共展示了pymc3.summary方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: divergence_plot
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def divergence_plot(nm, ylim=None):
if nm.hbr.configs['n_chains'] > 1 and nm.hbr.model_type != 'nn':
a = pm.summary(nm.hbr.trace).round(2)
plt.figure()
plt.hist(a['r_hat'],10)
plt.title('Gelman-Rubin diagnostic for divergence')
divergent = nm.hbr.trace['diverging']
tracedf = pm.trace_to_dataframe(nm.hbr.trace)
_, ax = plt.subplots(2, 1, figsize=(15, 4), sharex=True, sharey=True)
ax[0].plot(tracedf.values[divergent == 0].T, color='k', alpha=.05)
ax[0].set_title('No Divergences', fontsize=10)
ax[1].plot(tracedf.values[divergent == 1].T, color='C2', lw=.5, alpha=.5)
ax[1].set_title('Divergences', fontsize=10)
plt.ylim(ylim)
plt.xticks(range(tracedf.shape[1]), list(tracedf.columns))
plt.xticks(rotation=90, fontsize=7)
plt.tight_layout()
plt.show()
示例2: _predict_scores_fixed
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def _predict_scores_fixed(self, X, **kwargs):
mean_trace = dict(pm.summary(self.trace)["mean"])
weights = np.array(
[
mean_trace["weights[{}]".format(i)]
for i in range(self.n_object_features_fit_)
]
)
lambda_k = np.array(
[mean_trace["lambda_k[{}]".format(i)] for i in range(self.n_nests)]
)
weights_ik = np.zeros((self.n_object_features_fit_, self.n_nests))
for i, k in product(range(self.n_object_features_fit_), range(self.n_nests)):
weights_ik[i][k] = mean_trace["weights_ik[{},{}]".format(i, k)]
alpha_ik = np.dot(X, weights_ik)
alpha_ik = npu.softmax(alpha_ik, axis=2)
utility = np.dot(X, weights)
p = self._get_probabilities_np(utility, lambda_k, alpha_ik)
return p
示例3: _predict_scores_fixed
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def _predict_scores_fixed(self, X, **kwargs):
y_nests = self.create_nests(X)
mean_trace = dict(pm.summary(self.trace)["mean"])
weights = np.array(
[
mean_trace["weights[{}]".format(i)]
for i in range(self.n_object_features_fit_)
]
)
weights_k = np.array(
[
mean_trace["weights_k[{}]".format(i)]
for i in range(self.n_object_features_fit_)
]
)
lambda_k = np.array(
[mean_trace["lambda_k[{}]".format(i)] for i in range(self.n_nests)]
)
weights = weights / lambda_k[:, None]
utility_k = np.dot(self.features_nests, weights_k)
utility = self._eval_utility_np(X, y_nests, weights)
scores = self._get_probabilities_np(y_nests, utility, lambda_k, utility_k)
return scores
示例4: get_L2_estimates
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def get_L2_estimates(summary):
"""
Returns digestible estimates from the L2 estimates.
:type summary: :class:`~pandas.core.frame.DataFrame`
:param summary: Summary statistics from Posterior distributions
:return:
(tuple): tuple containing:
* mean_te (float) : Mean value of elastic thickness from posterior (km)
* std_te (float) : Standard deviation of elastic thickness from posterior (km)
* mean_F (float) : Mean value of load ratio from posterior
* std_F (float) : Standard deviation of load ratio from posterior
* mean_a (float, optional) : Mean value of phase difference between initial loads from posterior
* std_a (float, optional) : Standard deviation of phase difference between initial loads from posterior
* rchi2 (float) : Reduced chi-squared value
"""
mean_a = None
# Go through all estimates
for index, row in summary.iterrows():
if index=='Te':
mean_te = row['mean']
std_te = row['std']
rchi2 = row['chi2']
elif index=='F':
mean_F = row['mean']
std_F = row['std']
elif index=='alpha':
mean_a = row['mean']
std_a = row['std']
if mean_a is not None:
return mean_te, std_te, mean_F, std_F, mean_a, std_a, rchi2
else:
return mean_te, std_te, mean_F, std_F, rchi2
示例5: _predict_scores_fixed
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def _predict_scores_fixed(self, X, **kwargs):
summary = dict(pm.summary(self.trace)["mean"])
weights = np.zeros((self.n_object_features_fit_, self.n_mixtures))
for i, k in product(range(self.n_object_features_fit_), range(self.n_mixtures)):
weights[i][k] = summary["weights[{},{}]".format(i, k)]
utility = np.dot(X, weights)
p = np.mean(npu.softmax(utility, axis=1), axis=2)
return p
示例6: _predict_scores_fixed
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def _predict_scores_fixed(self, X, **kwargs):
mean_trace = dict(pm.summary(self.trace)["mean"])
weights = np.array(
[
mean_trace["weights[{}]".format(i)]
for i in range(self.n_object_features_fit_)
]
)
lambda_k = np.array(
[mean_trace["lambda_k[{}]".format(i)] for i in range(self.n_nests)]
)
utility = np.dot(X, weights)
p = self._get_probabilities_np(utility, lambda_k)
return p
示例7: _predict_scores_fixed
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def _predict_scores_fixed(self, X, **kwargs):
d = dict(pm.summary(self.trace)["mean"])
intercept = 0.0
weights = np.array(
[d["weights[{}]".format(i)] for i in range(self.n_object_features_fit_)]
)
if "intercept" in d:
intercept = intercept + d["intercept"]
return np.dot(X, weights) + intercept
示例8: get_bayes_estimates
# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import summary [as 別名]
def get_bayes_estimates(summary, map_estimate):
"""
Returns digestible estimates from the Posterior distributions.
:type summary: :class:`~pandas.core.frame.DataFrame`
:param summary: Summary statistics from Posterior distributions
:type map_estimate: dict
:param map_estimate: Container for Maximum a Posteriori (MAP) estimates
:return:
(tuple): tuple containing:
* mean_te (float) : Mean value of elastic thickness ``Te`` from posterior (km)
* std_te (float) : Standard deviation of elastic thickness ``Te`` from posterior (km)
* C2_5_te (float) : Lower limit of 95% confidence interval on ``Te`` (km)
* C97_5_te (float) : Upper limit of 95% confidence interval on ``Te`` (km)
* MAP_te (float) : Maximum a Posteriori ``Te`` (km)
* mean_F (float) : Mean value of load ratio ``F`` from posterior
* std_F (float) : Standard deviation of load ratio ``F`` from posterior
* C2_5_F (float) : Lower limit of 95% confidence interval on ``F``
* C97_5_F (float) : Upper limit of 95% confidence interval on ``F``
* MAP_F (float) : Maximum a Posteriori load ratio ``F``
* mean_a (float, optional) : Mean value of initial phase difference ``alpha`` from posterior
* std_a (float, optional) : Standard deviation of initial phase difference `alpha`` from posterior
* C2_5_a (float, optional) : Lower limit of 95% confidence interval on ``alpha``
* C97_5_a (float, optional) : Upper limit of 95% confidence interval on ``alpha``
* MAP_a (float, optional) : Maximum a Posteriori initial phase difference ``alpha``
"""
mean_a = None
# Go through all estimates
for index, row in summary.iterrows():
if index=='Te':
mean_te = row['mean']
std_te = row['sd']
C2_5_te = row['hpd_2.5']
C97_5_te = row['hpd_97.5']
MAP_te = np.float(map_estimate['Te'])
elif index=='F':
mean_F = row['mean']
std_F = row['sd']
C2_5_F = row['hpd_2.5']
C97_5_F = row['hpd_97.5']
MAP_F = np.float(map_estimate['F'])
elif index=='alpha':
mean_a = row['mean']
std_a = row['sd']
C2_5_a = row['hpd_2.5']
C97_5_a = row['hpd_97.5']
MAP_a = np.float(map_estimate['alpha'])
if mean_a is not None:
return mean_te, std_te, C2_5_te, C97_5_te, MAP_te, \
mean_F, std_F, C2_5_F, C97_5_F, MAP_F, \
mean_a, std_a, C2_5_a, C97_5_a, MAP_a
else:
return mean_te, std_te, C2_5_te, C97_5_te, MAP_te, \
mean_F, std_F, C2_5_F, C97_5_F, MAP_F