當前位置: 首頁>>代碼示例>>Python>>正文


Python pymc3.Normal方法代碼示例

本文整理匯總了Python中pymc3.Normal方法的典型用法代碼示例。如果您正苦於以下問題:Python pymc3.Normal方法的具體用法?Python pymc3.Normal怎麽用?Python pymc3.Normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pymc3的用法示例。


在下文中一共展示了pymc3.Normal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def model(profiles, comparisons, selections, sample=2500, alpha_prior_std=10):
    all_attributes = pd.get_dummies(profiles).columns
    profiles_dummies = pd.get_dummies(profiles, drop_first=True)
    choices = pd.concat({profile: profiles_dummies.loc[comparisons[profile]].reset_index(drop=True) for profile in comparisons.columns}, axis=1)

    respondants = selections.columns
    n_attributes_in_model = profiles_dummies.shape[1]
    n_participants = selections.shape[1]

    with pm.Model():

        # https://www.sawtoothsoftware.com/download/ssiweb/CBCHB_Manual.pdf
        # need to include the covariance matrix as a parent of `partsworth`
        alpha = pm.Normal('alpha', 0, sd=alpha_prior_std, shape=n_attributes_in_model, testval=np.random.randn(n_attributes_in_model))
        partsworth = pm.MvNormal("partsworth", alpha, tau=np.eye(n_attributes_in_model), shape=(n_participants, n_attributes_in_model))

        cs = [_create_observation_variable(selection, choices, partsworth[i, :]) for i, (_, selection) in enumerate(selections.iteritems())]

        trace = pm.sample(sample)
    return transform_trace_to_individual_summary_statistics(trace, respondants, profiles_dummies.columns, all_attributes) 
開發者ID:CamDavidsonPilon,項目名稱:lifestyles,代碼行數:22,代碼來源:cbc_hb.py

示例2: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def fit(self, X, Y, n_samples=10000, tune_steps=1000, n_jobs=4):
        with pm.Model() as self.model:
            # Priors
            std = pm.Uniform("std", 0, self.sps, testval=X.std())
            beta = pm.StudentT("beta", mu=0, lam=self.sps, nu=self.nu)
            alpha = pm.StudentT("alpha", mu=0, lam=self.sps, nu=self.nu, testval=Y.mean())
            # Deterministic model
            mean = pm.Deterministic("mean", alpha + beta * X)
            # Posterior distribution
            obs = pm.Normal("obs", mu=mean, sd=std, observed=Y)
            ## Run MCMC
            # Find search start value with maximum a posterior estimation
            start = pm.find_MAP()
            # sample posterior distribution for latent variables
            trace = pm.sample(n_samples, njobs=n_jobs, tune=tune_steps, start=start)
            # Recover posterior samples
            self.burned_trace = trace[int(n_samples / 2):] 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:19,代碼來源:bayesian.py

示例3: tfp_schools_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def tfp_schools_model(num_schools, treatment_stddevs):
    """Non-centered eight schools model for tfp."""
    import tensorflow_probability.python.edward2 as ed
    import tensorflow as tf

    if int(tf.__version__[0]) > 1:
        import tensorflow.compat.v1 as tf  # pylint: disable=import-error

        tf.disable_v2_behavior()

    avg_effect = ed.Normal(loc=0.0, scale=10.0, name="avg_effect")  # `mu`
    avg_stddev = ed.Normal(loc=5.0, scale=1.0, name="avg_stddev")  # `log(tau)`
    school_effects_standard = ed.Normal(
        loc=tf.zeros(num_schools), scale=tf.ones(num_schools), name="school_effects_standard"
    )  # `eta`
    school_effects = avg_effect + tf.exp(avg_stddev) * school_effects_standard  # `theta`
    treatment_effects = ed.Normal(
        loc=school_effects, scale=treatment_stddevs, name="treatment_effects"
    )  # `y`
    return treatment_effects 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:22,代碼來源:helpers.py

示例4: apply_parameters

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def apply_parameters(self, g, df, initialization_trace=None):
        for node in nx.topological_sort(g):
            parent_names = g.nodes()[node]["parent_names"]
            if parent_names:
                if not initialization_trace:
                    sd = np.array([df[node].std()] + (df[node].std() / df[parent_names].std()).tolist())
                    mu = np.array([df[node].std()] + (df[node].std() / df[parent_names].std()).tolist())
                    node_sd = df[node].std()
                else:
                    node_sd = initialization_trace["{}_sd".format(node)].mean()
                    mu = initialization_trace["beta_{}".format(node)].mean(axis=0)
                    sd = initialization_trace["beta_{}".format(node)].std(axis=0)
                g.nodes()[node]["parameters"] = pm.Normal("beta_{}".format(node), mu=mu, sd=sd,
                                                          shape=len(parent_names) + 1)
                g.nodes()[node]["sd"] = pm.Exponential("{}_sd".format(node), lam=node_sd)
        return g 
開發者ID:microsoft,項目名稱:dowhy,代碼行數:18,代碼來源:mcmc_sampler.py

示例5: build_bayesian_network

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def build_bayesian_network(self, g, df):
        for node in nx.topological_sort(g):
            if g.nodes()[node]["parent_names"]:
                mu = g.nodes()[node]["parameters"][0]  # intercept
                mu += pm.math.dot(df[g.nodes()[node]["parent_names"]],
                                  g.nodes()[node]["parameters"][1:])
                if g.nodes()[node]["variable_type"] == 'c':
                    sd = g.nodes()[node]["sd"]
                    g.nodes()[node]["variable"] = pm.Normal("{}".format(node),
                                                            mu=mu, sd=sd,
                                                            observed=df[node])
                elif g.nodes()[node]["variable_type"] == 'b':
                    g.nodes()[node]["variable"] = pm.Bernoulli("{}".format(node),
                                                               logit_p=mu,
                                                               observed=df[node])
                else:
                    raise Exception("Unrecognized variable type: {}".format(g.nodes()[node]["variable_type"]))
        return g 
開發者ID:microsoft,項目名稱:dowhy,代碼行數:20,代碼來源:mcmc_sampler.py

示例6: __get_weights

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def __get_weights(self, index, shape, scale = None):
		return pm.Normal('w%d' % index, self.weight_loc, self.weight_scale, shape = shape) 
開發者ID:aspuru-guzik-group,項目名稱:phoenics,代碼行數:4,代碼來源:pymc3_interface.py

示例7: __get_biases

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def __get_biases(self, index, shape, scale = None):
		return pm.Normal('b%d' % index, self.weight_loc, self.weight_scale, shape = shape) 
開發者ID:aspuru-guzik-group,項目名稱:phoenics,代碼行數:4,代碼來源:pymc3_interface.py

示例8: test_shape

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def test_shape(self):
        spec = DistSpec(Normal, mu=0, sd=1)
        spec2 = DistSpec(Normal, mu=0, sd=DistSpec(Lognormal, 0, 1))

        with Model('layer'):
            var = spec((100, 100), 'var')
            var2 = spec2((100, 100), 'var2')
            assert (var.init_value.shape == (100, 100))
            assert (var.name.endswith('var'))
            assert (var2.init_value.shape == (100, 100))
            assert (var2.name.endswith('var2')) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:13,代碼來源:test_spec.py

示例9: test_expressions

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def test_expressions(expr):
    with Model() as model:
        var = expr((10, 10))
        Normal('obs', observed=var)
        assert var.tag.test_value.shape == (10, 10)
        assert len(model.free_RVs) == 3
        fit(1) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:9,代碼來源:test_spec.py

示例10: test_workflow

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def test_workflow(self):
        inp = InputLayer(self.x.shape)
        out = DenseLayer(inp, 1, W=NormalSpec(sd=LognormalSpec()), nonlinearity=to.identity)
        out = DenseLayer(out, 1, W=NormalSpec(sd=LognormalSpec()), nonlinearity=to.identity)
        assert out.root is inp
        with out:
            pm.Normal('y', mu=get_output(out),
                      sd=self.sd,
                      observed=self.y) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:11,代碼來源:test_magic.py

示例11: from_posterior

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def from_posterior(param, samples, distribution = None, half = False, freedom=10):
    
    if len(samples.shape)>1:
        shape = samples.shape[1:]
    else:
        shape = None
            
    if (distribution is None):
        smin, smax = np.min(samples), np.max(samples)
        width = smax - smin
        x = np.linspace(smin, smax, 1000)
        y = stats.gaussian_kde(samples)(x)
        if half:
            x = np.concatenate([x, [x[-1] + 0.1 * width]])
            y = np.concatenate([y, [0]])
        else:
            x = np.concatenate([[x[0] - 0.1 * width], x, [x[-1] + 0.1 * width]])
            y = np.concatenate([[0], y, [0]])
        return pm.distributions.Interpolated(param, x, y)
    elif (distribution=='normal'):
        temp = stats.norm.fit(samples)
        if shape is None:
            return pm.Normal(param, mu=temp[0], sigma=freedom*temp[1])
        else:
            return pm.Normal(param, mu=temp[0], sigma=freedom*temp[1], shape=shape)
    elif (distribution=='hnormal'):
        temp = stats.halfnorm.fit(samples)
        if shape is None:
            return pm.HalfNormal(param, sigma=freedom*temp[1])
        else:
            return pm.HalfNormal(param, sigma=freedom*temp[1], shape=shape)
    elif (distribution=='hcauchy'):
        temp = stats.halfcauchy.fit(samples)
        if shape is None:
            return pm.HalfCauchy(param, freedom*temp[1])
        else:
            return pm.HalfCauchy(param, freedom*temp[1], shape=shape) 
開發者ID:amarquand,項目名稱:nispat,代碼行數:39,代碼來源:hbr.py

示例12: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def fit(self, X, y):
        """Fit the Imputer to the dataset by fitting bayesian model.

        Args:
            X (pd.Dataframe): dataset to fit the imputer.
            y (pd.Series): response, which is eventually imputed.

        Returns:
            self. Instance of the class.
        """
        _not_num_series(self.strategy, y)
        nc = len(X.columns)

        # initialize model for bayesian linear reg. Default vals for priors
        # assume data is scaled and centered. Convergence can struggle or fail
        # if not the case and proper values for the priors are not specified
        # separately, also assumes each beta is normal and "independent"
        # while betas likely not independent, this is technically a rule of OLS
        with pm.Model() as fit_model:
            alpha = pm.Normal("alpha", self.am, sd=self.asd)
            beta = pm.Normal("beta", self.bm, sd=self.bsd, shape=nc)
            sigma = pm.HalfCauchy("σ", self.sig)
            mu = alpha+beta.dot(X.T)
            score = pm.Normal("score", mu, sd=sigma, observed=y)
        self.statistics_ = {"param": fit_model, "strategy": self.strategy}
        return self 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:28,代碼來源:bayesian_regression.py

示例13: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def fit(self, X, y):
        """Fit the Imputer to the dataset by fitting bayesian and LS model.

        Args:
            X (pd.Dataframe): dataset to fit the imputer.
            y (pd.Series): response, which is eventually imputed.

        Returns:
            self. Instance of the class.
        """
        _not_num_series(self.strategy, y)
        nc = len(X.columns)

        # get predictions for the data, which will be used for "closest" vals
        y_pred = self.lm.fit(X, y).predict(X)
        y_df = DataFrame({"y": y, "y_pred": y_pred})

        # calculate bayes and use appropriate means for alpha and beta priors
        # here we specify the point estimates from the linear regression as the
        # means for the priors. This will greatly speed up posterior sampling
        # and help ensure that convergence occurs
        if self.am is None:
            self.am = self.lm.intercept_
        if self.bm is None:
            self.bm = self.lm.coef_

        # initialize model for bayesian linear reg. Default vals for priors
        # assume data is scaled and centered. Convergence can struggle or fail
        # if not the case and proper values for the priors are not specified
        # separately, also assumes each beta is normal and "independent"
        # while betas likely not independent, this is technically a rule of OLS
        with pm.Model() as fit_model:
            alpha = pm.Normal("alpha", self.am, sd=self.asd)
            beta = pm.Normal("beta", self.bm, sd=self.bsd, shape=nc)
            sigma = pm.HalfCauchy("σ", self.sig)
            mu = alpha+beta.dot(X.T)
            score = pm.Normal("score", mu, sd=sigma, observed=y)
        params = {"model": fit_model, "y_obs": y_df}
        self.statistics_ = {"param": params, "strategy": self.strategy}
        return self 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:42,代碼來源:pmm.py

示例14: _pyro_noncentered_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def _pyro_noncentered_model(J, sigma, y=None):
    import pyro
    import pyro.distributions as dist

    mu = pyro.sample("mu", dist.Normal(0, 5))
    tau = pyro.sample("tau", dist.HalfCauchy(5))
    with pyro.plate("J", J):
        eta = pyro.sample("eta", dist.Normal(0, 1))
        theta = mu + tau * eta
        return pyro.sample("obs", dist.Normal(theta, sigma), obs=y) 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:12,代碼來源:helpers.py

示例15: _numpyro_noncentered_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Normal [as 別名]
def _numpyro_noncentered_model(J, sigma, y=None):
    import numpyro
    import numpyro.distributions as dist

    mu = numpyro.sample("mu", dist.Normal(0, 5))
    tau = numpyro.sample("tau", dist.HalfCauchy(5))
    with numpyro.plate("J", J):
        eta = numpyro.sample("eta", dist.Normal(0, 1))
        theta = mu + tau * eta
        return numpyro.sample("obs", dist.Normal(theta, sigma), obs=y) 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:12,代碼來源:helpers.py


注:本文中的pymc3.Normal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。