當前位置: 首頁>>代碼示例>>Python>>正文


Python pymc3.Model方法代碼示例

本文整理匯總了Python中pymc3.Model方法的典型用法代碼示例。如果您正苦於以下問題:Python pymc3.Model方法的具體用法?Python pymc3.Model怎麽用?Python pymc3.Model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pymc3的用法示例。


在下文中一共展示了pymc3.Model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def model(profiles, comparisons, selections, sample=2500, alpha_prior_std=10):
    all_attributes = pd.get_dummies(profiles).columns
    profiles_dummies = pd.get_dummies(profiles, drop_first=True)
    choices = pd.concat({profile: profiles_dummies.loc[comparisons[profile]].reset_index(drop=True) for profile in comparisons.columns}, axis=1)

    respondants = selections.columns
    n_attributes_in_model = profiles_dummies.shape[1]
    n_participants = selections.shape[1]

    with pm.Model():

        # https://www.sawtoothsoftware.com/download/ssiweb/CBCHB_Manual.pdf
        # need to include the covariance matrix as a parent of `partsworth`
        alpha = pm.Normal('alpha', 0, sd=alpha_prior_std, shape=n_attributes_in_model, testval=np.random.randn(n_attributes_in_model))
        partsworth = pm.MvNormal("partsworth", alpha, tau=np.eye(n_attributes_in_model), shape=(n_participants, n_attributes_in_model))

        cs = [_create_observation_variable(selection, choices, partsworth[i, :]) for i, (_, selection) in enumerate(selections.iteritems())]

        trace = pm.sample(sample)
    return transform_trace_to_individual_summary_statistics(trace, respondants, profiles_dummies.columns, all_attributes) 
開發者ID:CamDavidsonPilon,項目名稱:lifestyles,代碼行數:22,代碼來源:cbc_hb.py

示例2: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def fit(self, X, Y, n_samples=10000, tune_steps=1000, n_jobs=4):
        with pm.Model() as self.model:
            # Priors
            std = pm.Uniform("std", 0, self.sps, testval=X.std())
            beta = pm.StudentT("beta", mu=0, lam=self.sps, nu=self.nu)
            alpha = pm.StudentT("alpha", mu=0, lam=self.sps, nu=self.nu, testval=Y.mean())
            # Deterministic model
            mean = pm.Deterministic("mean", alpha + beta * X)
            # Posterior distribution
            obs = pm.Normal("obs", mu=mean, sd=std, observed=Y)
            ## Run MCMC
            # Find search start value with maximum a posterior estimation
            start = pm.find_MAP()
            # sample posterior distribution for latent variables
            trace = pm.sample(n_samples, njobs=n_jobs, tune=tune_steps, start=start)
            # Recover posterior samples
            self.burned_trace = trace[int(n_samples / 2):] 
開發者ID:naripok,項目名稱:cryptotrader,代碼行數:19,代碼來源:bayesian.py

示例3: test_spec

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def test_spec(spec, kwargs):
    with Model():
        assert (
            spec(**kwargs)((1, 1)).tag.test_value.shape
            ==
            (1, 1)
        )
        assert (
            spec(**kwargs)((10, 1)).tag.test_value.shape
            ==
            (10, 1)
        )
        assert (
            spec(**kwargs)((10, 1, 10)).tag.test_value.shape
            ==
            (10, 1, 10)
        ) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:19,代碼來源:test_spec.py

示例4: main

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def main():

    #load data    
    returns = data.get_data_google('SPY', start='2008-5-1', end='2009-12-1')['Close'].pct_change()
    returns.plot()
    plt.ylabel('daily returns in %');
    
    with pm.Model() as sp500_model:
        
        nu = pm.Exponential('nu', 1./10, testval=5.0)
        sigma = pm.Exponential('sigma', 1./0.02, testval=0.1)
        
        s = pm.GaussianRandomWalk('s', sigma**-2, shape=len(returns))                
        r = pm.StudentT('r', nu, lam=pm.math.exp(-2*s), observed=returns)
        
    
    with sp500_model:
        trace = pm.sample(2000)

    pm.traceplot(trace, [nu, sigma]);
    plt.show()
    
    plt.figure()
    returns.plot()
    plt.plot(returns.index, np.exp(trace['s',::5].T), 'r', alpha=.03)
    plt.legend(['S&P500', 'stochastic volatility process'])
    plt.show() 
開發者ID:vsmolyakov,項目名稱:fin,代碼行數:29,代碼來源:stochastic_volatility.py

示例5: __subclasshook__

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def __subclasshook__(cls, C):
        if lasagne.layers.Layer in C.__mro__ or pm.Model in C.__mro__:
            return True
        else:
            return False 
開發者ID:ferrine,項目名稱:gelato,代碼行數:7,代碼來源:base.py

示例6: bayes

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def bayes(layercls, stack=1):
    try:
        issubcls = issubclass(layercls, lasagne.layers.base.Layer)
    except TypeError:
        raise TypeError('{} needs to be a Layer subclass'
                        .format(layercls))
    if issubcls:
        if type(layercls) is LayerModelMeta:
            raise TypeError('{} is already bayesian'
                            .format(layercls))
        else:
            @six.add_metaclass(LayerModelMeta)
            class BayesianAnalog(layercls, pm.Model):
                pass
            frm = inspect.stack()[stack]
            mod = inspect.getmodule(frm[0])
            if mod is None:
                modname = '__main__'
            else:
                modname = mod.__name__
            BayesianAnalog.__module__ = modname
            BayesianAnalog.__doc__ = layercls.__doc__
            BayesianAnalog.__name__ = layercls.__name__
            return BayesianAnalog
    else:
        raise TypeError('{} needs to be a Layer subclass'
                        .format(layercls)) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:29,代碼來源:base.py

示例7: find_parent

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def find_parent(layer):
    candidates = get_all_layers(layer)[::-1]
    found = None
    for candidate in candidates:
        if isinstance(candidate, pm.Model):
            found = candidate
            break
    return found 
開發者ID:ferrine,項目名稱:gelato,代碼行數:10,代碼來源:helper.py

示例8: test_shape

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def test_shape(self):
        spec = DistSpec(Normal, mu=0, sd=1)
        spec2 = DistSpec(Normal, mu=0, sd=DistSpec(Lognormal, 0, 1))

        with Model('layer'):
            var = spec((100, 100), 'var')
            var2 = spec2((100, 100), 'var2')
            assert (var.init_value.shape == (100, 100))
            assert (var.name.endswith('var'))
            assert (var2.init_value.shape == (100, 100))
            assert (var2.name.endswith('var2')) 
開發者ID:ferrine,項目名稱:gelato,代碼行數:13,代碼來源:test_spec.py

示例9: built_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def built_model(self):
        """
        Initialise :class:`pymc3.Model` depending on problem composites,
        geodetic and/or seismic data are included. Composites also determine
        the problem to be solved.
        """

        logger.info('... Building model ...\n')

        pc = self.config.problem_config

        with Model() as self.model:

            self.rvs, self.fixed_params = self.get_random_variables()

            self.init_hyperparams()

            total_llk = tt.zeros((1), tconfig.floatX)

            for datatype, composite in self.composites.items():
                if datatype in bconfig.modes_catalog[pc.mode].keys():
                    input_rvs = weed_input_rvs(
                        self.rvs, pc.mode, datatype=datatype)
                    fixed_rvs = weed_input_rvs(
                        self.fixed_params, pc.mode, datatype=datatype)

                else:
                    input_rvs = self.rvs
                    fixed_rvs = self.fixed_params

                total_llk += composite.get_formula(
                    input_rvs, fixed_rvs, self.hyperparams, pc)

            # deterministic RV to write out llks to file
            like = Deterministic('tmp', total_llk)

            # will overwrite deterministic name ...
            llk = Potential(self._like_name, like)
            logger.info('Model building was successful! \n') 
開發者ID:hvasbath,項目名稱:beat,代碼行數:41,代碼來源:problems.py

示例10: plant_lijection

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def plant_lijection(self):
        """
        Add list to array bijection to model object by monkey-patching.
        """
        if self.model is not None:
            lordering = ListArrayOrdering(
                self.model.unobserved_RVs, intype='tensor')
            lpoint = [var.tag.test_value for var in self.model.unobserved_RVs]
            self.model.lijection = ListToArrayBijection(lordering, lpoint)
        else:
            raise AttributeError('Model needs to be built!') 
開發者ID:hvasbath,項目名稱:beat,代碼行數:13,代碼來源:problems.py

示例11: built_hyper_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def built_hyper_model(self):
        """
        Initialise :class:`pymc3.Model` depending on configuration file,
        geodetic and/or seismic data are included. Estimates initial parameter
        bounds for hyperparameters.
        """

        logger.info('... Building Hyper model ...\n')

        pc = self.config.problem_config

        if len(self.hierarchicals) == 0:
            self.init_hierarchicals()

        point = self.get_random_point(include=['hierarchicals', 'priors'])

        if self.config.problem_config.mode == bconfig.geometry_mode_str:
            for param in pc.priors.values():
                point[param.name] = param.testvalue

        with Model() as self.model:

            self.init_hyperparams()

            total_llk = tt.zeros((1), tconfig.floatX)

            for composite in self.composites.values():
                if hasattr(composite, 'analyse_noise'):
                    composite.analyse_noise(point)
                    composite.init_weights()

                composite.update_llks(point)

                total_llk += composite.get_hyper_formula(self.hyperparams)

            like = Deterministic('tmp', total_llk)
            llk = Potential(self._like_name, like)
            logger.info('Hyper model building was successful!') 
開發者ID:hvasbath,項目名稱:beat,代碼行數:40,代碼來源:problems.py

示例12: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def fit(self, X, y):
        """
        Fits a Gaussian Process regressor using MCMC.

        Parameters
        ----------
        X: np.ndarray, shape=(nsamples, nfeatures)
            Training instances to fit the GP.
        y: np.ndarray, shape=(nsamples,)
            Corresponding continuous target values to `X`.

        """
        self.X = X
        self.n = self.X.shape[0]
        self.y = y
        self.model = pm.Model()

        with self.model as model:
            l = pm.Uniform('l', 0, 10)

            log_s2_f = pm.Uniform('log_s2_f', lower=-7, upper=5)
            s2_f = pm.Deterministic('sigmaf', tt.exp(log_s2_f))

            log_s2_n = pm.Uniform('log_s2_n', lower=-7, upper=5)
            s2_n = pm.Deterministic('sigman', tt.exp(log_s2_n))

            f_cov = s2_f * covariance_equivalence[type(self.covfunc).__name__](1, l)
            Sigma = f_cov(self.X) + tt.eye(self.n) * s2_n ** 2
            y_obs = pm.MvNormal('y_obs', mu=np.zeros(self.n), cov=Sigma, observed=self.y)
        with self.model as model:
            if self.step is not None:
                self.trace = pm.sample(self.niter, step=self.step())[self.burnin:]
            else:
                self.trace = pm.sample(self.niter, init=self.init)[self.burnin:] 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:36,代碼來源:GaussianProcessMCMC.py

示例13: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def fit(self, X, y):
        """
        Fits a Student-t regressor using MCMC.

        Parameters
        ----------
        X: np.ndarray, shape=(nsamples, nfeatures)
            Training instances to fit the GP.
        y: np.ndarray, shape=(nsamples,)
            Corresponding continuous target values to `X`.

        """
        self.X = X
        self.n = self.X.shape[0]
        self.y = y
        self.model = pm.Model()

        with self.model as model:
            l = pm.Uniform('l', 0, 10)

            log_s2_f = pm.Uniform('log_s2_f', lower=-7, upper=5)
            s2_f = pm.Deterministic('sigmaf', tt.exp(log_s2_f))

            log_s2_n = pm.Uniform('log_s2_n', lower=-7, upper=5)
            s2_n = pm.Deterministic('sigman', tt.exp(log_s2_n))

            f_cov = s2_f * covariance_equivalence[type(self.covfunc).__name__](1, l)
            Sigma = f_cov(self.X) + tt.eye(self.n) * s2_n ** 2
            y_obs = pm.MvStudentT('y_obs', nu=self.nu, mu=np.zeros(self.n), Sigma=Sigma, observed=self.y)
        with self.model as model:
            if self.step is not None:
                self.trace = pm.sample(self.niter, step=self.step())[self.burnin:]
            else:
                self.trace = pm.sample(self.niter, init=self.init)[self.burnin:] 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:36,代碼來源:tStudentProcessMCMC.py

示例14: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def fit(self, X, y):
        """Fit the Imputer to the dataset by fitting bayesian model.

        Args:
            X (pd.Dataframe): dataset to fit the imputer.
            y (pd.Series): response, which is eventually imputed.

        Returns:
            self. Instance of the class.
        """
        _not_num_series(self.strategy, y)
        nc = len(X.columns)

        # initialize model for bayesian linear reg. Default vals for priors
        # assume data is scaled and centered. Convergence can struggle or fail
        # if not the case and proper values for the priors are not specified
        # separately, also assumes each beta is normal and "independent"
        # while betas likely not independent, this is technically a rule of OLS
        with pm.Model() as fit_model:
            alpha = pm.Normal("alpha", self.am, sd=self.asd)
            beta = pm.Normal("beta", self.bm, sd=self.bsd, shape=nc)
            sigma = pm.HalfCauchy("σ", self.sig)
            mu = alpha+beta.dot(X.T)
            score = pm.Normal("score", mu, sd=sigma, observed=y)
        self.statistics_ = {"param": fit_model, "strategy": self.strategy}
        return self 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:28,代碼來源:bayesian_regression.py

示例15: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import Model [as 別名]
def fit(self, X, y):
        """Fit the Imputer to the dataset by fitting bayesian and LS model.

        Args:
            X (pd.Dataframe): dataset to fit the imputer.
            y (pd.Series): response, which is eventually imputed.

        Returns:
            self. Instance of the class.
        """
        _not_num_series(self.strategy, y)
        nc = len(X.columns)

        # get predictions for the data, which will be used for "closest" vals
        y_pred = self.lm.fit(X, y).predict(X)
        y_df = DataFrame({"y": y, "y_pred": y_pred})

        # calculate bayes and use appropriate means for alpha and beta priors
        # here we specify the point estimates from the linear regression as the
        # means for the priors. This will greatly speed up posterior sampling
        # and help ensure that convergence occurs
        if self.am is None:
            self.am = self.lm.intercept_
        if self.bm is None:
            self.bm = self.lm.coef_

        # initialize model for bayesian linear reg. Default vals for priors
        # assume data is scaled and centered. Convergence can struggle or fail
        # if not the case and proper values for the priors are not specified
        # separately, also assumes each beta is normal and "independent"
        # while betas likely not independent, this is technically a rule of OLS
        with pm.Model() as fit_model:
            alpha = pm.Normal("alpha", self.am, sd=self.asd)
            beta = pm.Normal("beta", self.bm, sd=self.bsd, shape=nc)
            sigma = pm.HalfCauchy("σ", self.sig)
            mu = alpha+beta.dot(X.T)
            score = pm.Normal("score", mu, sd=sigma, observed=y)
        params = {"model": fit_model, "y_obs": y_df}
        self.statistics_ = {"param": params, "strategy": self.strategy}
        return self 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:42,代碼來源:pmm.py


注:本文中的pymc3.Model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。