當前位置: 首頁>>代碼示例>>Python>>正文


Python pymc3.HalfCauchy方法代碼示例

本文整理匯總了Python中pymc3.HalfCauchy方法的典型用法代碼示例。如果您正苦於以下問題:Python pymc3.HalfCauchy方法的具體用法?Python pymc3.HalfCauchy怎麽用?Python pymc3.HalfCauchy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pymc3的用法示例。


在下文中一共展示了pymc3.HalfCauchy方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: from_posterior

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def from_posterior(param, samples, distribution = None, half = False, freedom=10):
    
    if len(samples.shape)>1:
        shape = samples.shape[1:]
    else:
        shape = None
            
    if (distribution is None):
        smin, smax = np.min(samples), np.max(samples)
        width = smax - smin
        x = np.linspace(smin, smax, 1000)
        y = stats.gaussian_kde(samples)(x)
        if half:
            x = np.concatenate([x, [x[-1] + 0.1 * width]])
            y = np.concatenate([y, [0]])
        else:
            x = np.concatenate([[x[0] - 0.1 * width], x, [x[-1] + 0.1 * width]])
            y = np.concatenate([[0], y, [0]])
        return pm.distributions.Interpolated(param, x, y)
    elif (distribution=='normal'):
        temp = stats.norm.fit(samples)
        if shape is None:
            return pm.Normal(param, mu=temp[0], sigma=freedom*temp[1])
        else:
            return pm.Normal(param, mu=temp[0], sigma=freedom*temp[1], shape=shape)
    elif (distribution=='hnormal'):
        temp = stats.halfnorm.fit(samples)
        if shape is None:
            return pm.HalfNormal(param, sigma=freedom*temp[1])
        else:
            return pm.HalfNormal(param, sigma=freedom*temp[1], shape=shape)
    elif (distribution=='hcauchy'):
        temp = stats.halfcauchy.fit(samples)
        if shape is None:
            return pm.HalfCauchy(param, freedom*temp[1])
        else:
            return pm.HalfCauchy(param, freedom*temp[1], shape=shape) 
開發者ID:amarquand,項目名稱:nispat,代碼行數:39,代碼來源:hbr.py

示例2: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def fit(self, X, y):
        """Fit the Imputer to the dataset by fitting bayesian model.

        Args:
            X (pd.Dataframe): dataset to fit the imputer.
            y (pd.Series): response, which is eventually imputed.

        Returns:
            self. Instance of the class.
        """
        _not_num_series(self.strategy, y)
        nc = len(X.columns)

        # initialize model for bayesian linear reg. Default vals for priors
        # assume data is scaled and centered. Convergence can struggle or fail
        # if not the case and proper values for the priors are not specified
        # separately, also assumes each beta is normal and "independent"
        # while betas likely not independent, this is technically a rule of OLS
        with pm.Model() as fit_model:
            alpha = pm.Normal("alpha", self.am, sd=self.asd)
            beta = pm.Normal("beta", self.bm, sd=self.bsd, shape=nc)
            sigma = pm.HalfCauchy("σ", self.sig)
            mu = alpha+beta.dot(X.T)
            score = pm.Normal("score", mu, sd=sigma, observed=y)
        self.statistics_ = {"param": fit_model, "strategy": self.strategy}
        return self 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:28,代碼來源:bayesian_regression.py

示例3: fit

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def fit(self, X, y):
        """Fit the Imputer to the dataset by fitting bayesian and LS model.

        Args:
            X (pd.Dataframe): dataset to fit the imputer.
            y (pd.Series): response, which is eventually imputed.

        Returns:
            self. Instance of the class.
        """
        _not_num_series(self.strategy, y)
        nc = len(X.columns)

        # get predictions for the data, which will be used for "closest" vals
        y_pred = self.lm.fit(X, y).predict(X)
        y_df = DataFrame({"y": y, "y_pred": y_pred})

        # calculate bayes and use appropriate means for alpha and beta priors
        # here we specify the point estimates from the linear regression as the
        # means for the priors. This will greatly speed up posterior sampling
        # and help ensure that convergence occurs
        if self.am is None:
            self.am = self.lm.intercept_
        if self.bm is None:
            self.bm = self.lm.coef_

        # initialize model for bayesian linear reg. Default vals for priors
        # assume data is scaled and centered. Convergence can struggle or fail
        # if not the case and proper values for the priors are not specified
        # separately, also assumes each beta is normal and "independent"
        # while betas likely not independent, this is technically a rule of OLS
        with pm.Model() as fit_model:
            alpha = pm.Normal("alpha", self.am, sd=self.asd)
            beta = pm.Normal("beta", self.bm, sd=self.bsd, shape=nc)
            sigma = pm.HalfCauchy("σ", self.sig)
            mu = alpha+beta.dot(X.T)
            score = pm.Normal("score", mu, sd=sigma, observed=y)
        params = {"model": fit_model, "y_obs": y_df}
        self.statistics_ = {"param": params, "strategy": self.strategy}
        return self 
開發者ID:kearnz,項目名稱:autoimpute,代碼行數:42,代碼來源:pmm.py

示例4: _pyro_noncentered_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def _pyro_noncentered_model(J, sigma, y=None):
    import pyro
    import pyro.distributions as dist

    mu = pyro.sample("mu", dist.Normal(0, 5))
    tau = pyro.sample("tau", dist.HalfCauchy(5))
    with pyro.plate("J", J):
        eta = pyro.sample("eta", dist.Normal(0, 1))
        theta = mu + tau * eta
        return pyro.sample("obs", dist.Normal(theta, sigma), obs=y) 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:12,代碼來源:helpers.py

示例5: _numpyro_noncentered_model

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def _numpyro_noncentered_model(J, sigma, y=None):
    import numpyro
    import numpyro.distributions as dist

    mu = numpyro.sample("mu", dist.Normal(0, 5))
    tau = numpyro.sample("tau", dist.HalfCauchy(5))
    with numpyro.plate("J", J):
        eta = numpyro.sample("eta", dist.Normal(0, 1))
        theta = mu + tau * eta
        return numpyro.sample("obs", dist.Normal(theta, sigma), obs=y) 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:12,代碼來源:helpers.py

示例6: pymc3_noncentered_schools

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def pymc3_noncentered_schools(data, draws, chains):
    """Non-centered eight schools implementation for pymc3."""
    import pymc3 as pm

    with pm.Model() as model:
        mu = pm.Normal("mu", mu=0, sd=5)
        tau = pm.HalfCauchy("tau", beta=5)
        eta = pm.Normal("eta", mu=0, sd=1, shape=data["J"])
        theta = pm.Deterministic("theta", mu + tau * eta)
        pm.Normal("obs", mu=theta, sd=data["sigma"], observed=data["y"])
        trace = pm.sample(draws, chains=chains)
    return model, trace 
開發者ID:arviz-devs,項目名稱:arviz,代碼行數:14,代碼來源:helpers.py

示例7: __init__

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def __init__(
        self,
        learner_cls,
        parameter_keys,
        model_params,
        fit_params,
        model_path,
        **kwargs,
    ):
        self.priors = [
            [pm.Normal, {"mu": 0, "sd": 10}],
            [pm.Laplace, {"mu": 0, "b": 10}],
        ]
        self.uniform_prior = [pm.Uniform, {"lower": -20, "upper": 20}]
        self.prior_indices = np.arange(len(self.priors))
        self.parameter_f = [
            (pm.Normal, {"mu": 0, "sd": 5}),
            (pm.Cauchy, {"alpha": 0, "beta": 1}),
            0,
            -5,
            5,
        ]
        self.parameter_s = [
            (pm.HalfCauchy, {"beta": 1}),
            (pm.HalfNormal, {"sd": 0.5}),
            (pm.Exponential, {"lam": 0.5}),
            (pm.Uniform, {"lower": 1, "upper": 10}),
            10,
        ]
        # ,(pm.HalfCauchy, {'beta': 2}), (pm.HalfNormal, {'sd': 1}),(pm.Exponential, {'lam': 1.0})]
        self.learner_cls = learner_cls
        self.model_params = model_params
        self.fit_params = fit_params
        self.parameter_keys = parameter_keys
        self.parameters = list(product(self.parameter_f, self.parameter_s))
        pf_arange = np.arange(len(self.parameter_f))
        ps_arange = np.arange(len(self.parameter_s))
        self.parameter_ind = list(product(pf_arange, ps_arange))
        self.model_path = model_path
        self.models = dict()
        self.logger = logging.getLogger(ModelSelector.__name__) 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:43,代碼來源:model_selector.py

示例8: model_configuration

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def model_configuration(self):
        """
            Constructs the dictionary containing the priors for the weight vectors for the model according to the
            regularization function. The parameters are:
                * **weights** : Weights to evaluates the utility of the objects

            For ``l1`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{b}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Laplace}(\\text{mu}=\\text{mu}_w, \\text{b}=\\text{b}_w)

            For ``l2`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{sd}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Normal}(\\text{mu}=\\text{mu}_w, \\text{sd}=\\text{sd}_w)
        """
        if self.regularization == "l2":
            weight = pm.Normal
            prior = "sd"
        elif self.regularization == "l1":
            weight = pm.Laplace
            prior = "b"
        configuration = {
            "weights": [
                weight,
                {
                    "mu": (pm.Normal, {"mu": 0, "sd": 10}),
                    prior: (pm.HalfCauchy, {"beta": 1}),
                },
            ]
        }
        self.logger.info(
            "Creating default config {}".format(print_dictionary(configuration))
        )
        return configuration 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:43,代碼來源:generalized_linear_model.py

示例9: fit_cross_cov

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def fit_cross_cov(self, n_exp=2, n_gauss=2, range_mu=None):
        """
        Fit an analytical covariance to the experimental data.
        Args:
            n_exp (int): number of exponential basic functions
            n_gauss (int): number of gaussian basic functions
            range_mu: prior mean of the range. Default mean of the lags

        Returns:
            pymc.Model: PyMC3 model to be sampled using MCMC
        """
        self.n_exp = n_exp
        self.n_gauss = n_gauss
        n_var = self.n_properties
        df = self.exp_var
        lags = self.lags

        # Prior standard deviation for the error of the regression
        prior_std_reg = df.std(0).max() * 10

        # Prior value for the mean of the ranges
        if not range_mu:
            range_mu = lags.mean()

        # pymc3 Model
        with pm.Model() as model:  # model specifications in PyMC3 are wrapped in a with-statement
            # Define priors
            sigma = pm.HalfCauchy('sigma', beta=prior_std_reg, testval=1., shape=n_var)

            psill = pm.Normal('sill', prior_std_reg, sd=.5 * prior_std_reg, shape=(n_exp + n_gauss))
            range_ = pm.Normal('range', range_mu, sd=range_mu * .3, shape=(n_exp + n_gauss))

            lambda_ = pm.Uniform('weights', 0, 1, shape=(n_var * (n_exp + n_gauss)))

            # Exponential covariance
            exp = pm.Deterministic('exp',
                                   # (lambda_[:n_exp*n_var]*
                                   psill[:n_exp] *
                                   (1. - T.exp(T.dot(-lags.values.reshape((len(lags), 1)),
                                                     (range_[:n_exp].reshape((1, n_exp)) / 3.) ** -1))))

            gauss = pm.Deterministic('gaus',
                                     psill[n_exp:] *
                                     (1. - T.exp(T.dot(-lags.values.reshape((len(lags), 1)) ** 2,
                                                       (range_[n_exp:].reshape((1, n_gauss)) * 4 / 7.) ** -2))))

            # We stack the basic functions in the same matrix and tile it to match the number of properties we have
            func = pm.Deterministic('func', T.tile(T.horizontal_stack(exp, gauss), (n_var, 1, 1)))

            # We weight each basic function and sum them
            func_w = pm.Deterministic("func_w", T.sum(func * lambda_.reshape((n_var, 1, (n_exp + n_gauss))), axis=2))

            for e, cross in enumerate(df.columns):
                # Likelihoods
                pm.Normal(cross + "_like", mu=func_w[e], sd=sigma[e], observed=df[cross].values)
        return model 
開發者ID:cgre-aachen,項目名稱:gempy,代碼行數:58,代碼來源:coKriging.py

示例10: model_configuration

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def model_configuration(self):
        """
            Constructs the dictionary containing the priors for the weight vectors for the model according to the
            regularization function. The parameters are:
                * **weights** : Weights to evaluates the utility of the objects
                * **weights_k** : Weights to evaluates the fractional allocation of each object in :math:'Q' to each nest

            For ``l1`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{b}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Laplace}(\\text{mu}=\\text{mu}_w, \\text{b}=\\text{b}_w)

            For ``l2`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{sd}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Normal}(\\text{mu}=\\text{mu}_w, \\text{sd}=\\text{sd}_w)

            Returns
            -------
                configuration : dict
                    Dictionary containing the priors applies on the weights
        """
        if self._config is None:
            if self.regularization == "l2":
                weight = pm.Normal
                prior = "sd"
            elif self.regularization == "l1":
                weight = pm.Laplace
                prior = "b"
            self._config = {
                "weights": [
                    weight,
                    {
                        "mu": (pm.Normal, {"mu": 0, "sd": 5}),
                        prior: (pm.HalfCauchy, {"beta": 1}),
                    },
                ],
                "weights_ik": [
                    weight,
                    {
                        "mu": (pm.Normal, {"mu": 0, "sd": 5}),
                        prior: (pm.HalfCauchy, {"beta": 1}),
                    },
                ],
            }
            self.logger.info(
                "Creating model with config {}".format(print_dictionary(self._config))
            )
        return self._config 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:57,代碼來源:generalized_nested_logit.py

示例11: model_configuration

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def model_configuration(self):
        """
            Constructs the dictionary containing the priors for the weight vectors for the model according to the
            regularization function. The parameters are:
                * **weights** : Distribution of the weigh vectors to evaluates the utility of the objects

            For ``l1`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{b}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Laplace}(\\text{mu}=\\text{mu}_w, \\text{b}=\\text{b}_w)

            For ``l2`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{sd}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Normal}(\\text{mu}=\\text{mu}_w, \\text{sd}=\\text{sd}_w)
        """
        if self._config is None:
            if self.regularization == "l2":
                weight = pm.Normal
                prior = "sd"
            elif self.regularization == "l1":
                weight = pm.Laplace
                prior = "b"
            self._config = {
                "weights": [
                    weight,
                    {
                        "mu": (pm.Normal, {"mu": 0, "sd": 5}),
                        prior: (pm.HalfCauchy, {"beta": 1}),
                    },
                ]
            }
            self.logger.info(
                "Creating model with config {}".format(print_dictionary(self._config))
            )
        return self._config 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:44,代碼來源:mixed_logit_model.py

示例12: model_configuration

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def model_configuration(self):
        """
            Constructs the dictionary containing the priors for the weight vectors for the model according to the
            regularization function. The parameters are:
                * **weights** : Weights to evaluates the utility of the objects

            For ``l1`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{b}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Laplace}(\\text{mu}=\\text{mu}_w, \\text{b}=\\text{b}_w)

            For ``l2`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{sd}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Normal}(\\text{mu}=\\text{mu}_w, \\text{sd}=\\text{sd}_w)

            Returns
            -------
                configuration : dict
                    Dictionary containing the priors applies on the weights
        """
        if self._config is None:
            if self.regularization == "l2":
                weight = pm.Normal
                prior = "sd"
            elif self.regularization == "l1":
                weight = pm.Laplace
                prior = "b"
            self._config = {
                "weights": [
                    weight,
                    {
                        "mu": (pm.Normal, {"mu": 0, "sd": 5}),
                        prior: (pm.HalfCauchy, {"beta": 1}),
                    },
                ]
            }
            self.logger.info(
                "Creating model with config {}".format(print_dictionary(self._config))
            )
        return self._config

    # 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:51,代碼來源:paired_combinatorial_logit.py

示例13: model_configuration

# 需要導入模塊: import pymc3 [as 別名]
# 或者: from pymc3 import HalfCauchy [as 別名]
def model_configuration(self):
        """
            Constructs the dictionary containing the priors for the weight vectors for the model according to the
            regularization function. The parameters are:
                * **weights** : Weights to evaluates the utility of the objects
                * **weights_k** : Weights to evaluates the utility of the nests

            For ``l1`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{b}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Laplace}(\\text{mu}=\\text{mu}_w, \\text{b}=\\text{b}_w)

            For ``l2`` regularization the priors are:

            .. math::

                \\text{mu}_w \\sim \\text{Normal}(\\text{mu}=0, \\text{sd}=5.0) \\\\
                \\text{sd}_w \\sim \\text{HalfCauchy}(\\beta=1.0) \\\\
                \\text{weights} \\sim \\text{Normal}(\\text{mu}=\\text{mu}_w, \\text{sd}=\\text{sd}_w)


            Returns
            -------
                configuration : dict
                    Dictionary containing the priors applies on the weights
        """
        if self._config is None:
            if self.regularization == "l2":
                weight = pm.Normal
                prior = "sd"
            elif self.regularization == "l1":
                weight = pm.Laplace
                prior = "b"
            self._config = {
                "weights": [
                    weight,
                    {
                        "mu": (pm.Normal, {"mu": 0, "sd": 5}),
                        prior: (pm.HalfCauchy, {"beta": 1}),
                    },
                ],
                "weights_k": [
                    weight,
                    {
                        "mu": (pm.Normal, {"mu": 0, "sd": 5}),
                        prior: (pm.HalfCauchy, {"beta": 1}),
                    },
                ],
            }
            self.logger.info(
                "Creating model with config {}".format(print_dictionary(self._config))
            )
        return self._config 
開發者ID:kiudee,項目名稱:cs-ranking,代碼行數:58,代碼來源:nested_logit_model.py


注:本文中的pymc3.HalfCauchy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。