當前位置: 首頁>>代碼示例>>Python>>正文


Python pylab.yticks方法代碼示例

本文整理匯總了Python中pylab.yticks方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.yticks方法的具體用法?Python pylab.yticks怎麽用?Python pylab.yticks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylab的用法示例。


在下文中一共展示了pylab.yticks方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot(self):
        """
        Plot startup data.
        """
        import pylab

        print("Plotting result...", end="")
        avg_data = self.average_data()
        avg_data = self.__sort_data(avg_data, False)
        if len(self.raw_data) > 1:
            err = self.stdev_data()
            sorted_err = [err[k] for k in list(zip(*avg_data))[0]]
        else:
            sorted_err = None
        pylab.barh(range(len(avg_data)), list(zip(*avg_data))[1],
                   xerr=sorted_err, align='center', alpha=0.4)
        pylab.yticks(range(len(avg_data)), list(zip(*avg_data))[0])
        pylab.xlabel("Average startup time (ms)")
        pylab.ylabel("Plugins")
        pylab.show()
        print(" done.") 
開發者ID:bchretien,項目名稱:vim-profiler,代碼行數:23,代碼來源:vim-profiler.py

示例2: heatmap

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def heatmap(df,fname=None,cmap='seismic',log=False):
    """Plot a heat map"""

    from matplotlib.colors import LogNorm
    f=plt.figure(figsize=(8,8))
    ax=f.add_subplot(111)
    norm=None
    df=df.replace(0,.1)
    if log==True:
        norm=LogNorm(vmin=df.min().min(), vmax=df.max().max())
    hm = ax.pcolor(df,cmap=cmap,norm=norm)
    plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm)
    plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
    plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90)
    #ax.axvline(4, color='gray'); ax.axvline(8, color='gray')
    plt.tight_layout()
    if fname != None:
        f.savefig(fname+'.png')
    return ax 
開發者ID:dmnfarrell,項目名稱:smallrnaseq,代碼行數:21,代碼來源:plotting.py

示例3: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot_confusion_matrix(test_label, pred):

    mapping = {1:'co2',2:'humidity',3:'pressure',4:'rmt',5:'status',6:'stpt',7:'flow',8:'HW sup',9:'HW ret',10:'CW sup',11:'CW ret',12:'SAT',13:'RAT',17:'MAT',18:'C enter',19:'C leave',21:'occu',30:'pos',31:'power',32:'ctrl',33:'fan spd',34:'timer'}
    cm_ = CM(test_label, pred)
    cm = normalize(cm_.astype(np.float), axis=1, norm='l1')
    fig = pl.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(cm, cmap=Color.YlOrBr)
    fig.colorbar(cax)
    for x in range(len(cm)):
        for y in range(len(cm)):
            ax.annotate(str("%.3f(%d)"%(cm[x][y], cm_[x][y])), xy=(y,x),
                        horizontalalignment='center',
                        verticalalignment='center',
                        fontsize=9)
    cm_cls =np.unique(np.hstack((test_label, pred)))
    cls = []
    for c in cm_cls:
        cls.append(mapping[c])
    pl.yticks(range(len(cls)), cls)
    pl.ylabel('True label')
    pl.xticks(range(len(cls)), cls)
    pl.xlabel('Predicted label')
    pl.title('Confusion Matrix (%.3f)'%(ACC(pred, test_label)))
    pl.show() 
開發者ID:plastering,項目名稱:plastering,代碼行數:27,代碼來源:transfer_learning.py

示例4: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot_confusion_matrix(self, matrix, labels):
        if not self.to_save and not self.to_show:
            return

        pylab.figure()
        pylab.imshow(matrix, interpolation='nearest', cmap=pylab.cm.jet)
        pylab.title("Confusion Matrix")

        for i, vi in enumerate(matrix):
            for j, vj in enumerate(vi):
                pylab.annotate("%.1f" % vj, xy=(j, i), horizontalalignment='center', verticalalignment='center', fontsize=9)

        pylab.colorbar()

        classes = np.arange(len(labels))
        pylab.xticks(classes, labels)
        pylab.yticks(classes, labels)

        pylab.ylabel('Expected label')
        pylab.xlabel('Predicted label') 
開發者ID:tonybeltramelli,項目名稱:Deep-Spying,代碼行數:22,代碼來源:View.py

示例5: plot_functional_map

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot_functional_map(C, newfig=True):
    vmax = max(np.abs(C.max()), np.abs(C.min()))
    vmin = -vmax
    C = ((C - vmin) / (vmax - vmin)) * 2 - 1
    if newfig:
        pl.figure(figsize=(5,5))
    else:
        pl.clf()
    ax = pl.gca()
    pl.pcolor(C[::-1], edgecolor=(0.9, 0.9, 0.9, 1), lw=0.5,
              vmin=-1, vmax=1, cmap=nice_mpl_color_map())
    # colorbar
    tick_locs   = [-1., 0.0, 1.0]
    tick_labels = ['min', 0, 'max']
    bar = pl.colorbar()
    bar.locator = matplotlib.ticker.FixedLocator(tick_locs)
    bar.formatter = matplotlib.ticker.FixedFormatter(tick_labels)
    bar.update_ticks()
    ax.set_aspect(1)
    pl.xticks([])
    pl.yticks([])
    if newfig:
        pl.show() 
開發者ID:tneumann,項目名稱:cmm,代碼行數:25,代碼來源:functional_map.py

示例6: plotInFrame

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plotInFrame(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids, pred_results_dir):

    PL.figure(figsize=(4.2,4.2))
    data = pd.read_csv(pred_results_dir + '/old_new_kl_predicted_summaries.txt', sep='\t').fillna(-1.0)
    label1, label2 = 'New 2x800x In Frame Perc', 'New 1600x In Frame Perc'
    xdata, ydata = data[label1], data[label2]
    PL.plot(xdata,ydata, '.', label='Synthetic between library (R=%.2f)' %  pearsonr(xdata,ydata)[0], color='C0',alpha=0.15)
    PL.plot(overbeek_inframes, ours_inframes, '^', label='Synthetic vs Endogenous (R=%.2f)' % pearsonr(overbeek_inframes, ours_inframes)[0], color='C1')
    for (x,y,id) in zip(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids):
        if abs(x-y) > 25.0: PL.text(x,y,id)
    PL.plot([0,100],[0,100],'k--')
    PL.ylabel('Percent In-Frame Mutations')
    PL.xlabel('Percent In-Frame Mutations')
    PL.legend()
    PL.xticks([],[])
    PL.yticks([],[])
    PL.show(block=False)
    saveFig('in_frame_full_scatter') 
開發者ID:felicityallen,項目名稱:SelfTarget,代碼行數:20,代碼來源:compare_overbeek_profiles.py

示例7: plot

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'):
        import pylab
        pylab.clf()
        pylab.imshow(-np.log10(self.results[self._start_y:,:]), 
            origin="lower",
            aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
        pylab.colorbar()

        # Fix xticks
        XMAX = float(self.results.shape[1])  # The max integer on xaxis
        xpos = list(range(0, int(XMAX), int(XMAX/5)))
        xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration]
        pylab.xticks(xpos, xx, fontsize=16)

        # Fix yticks
        YMAX = float(self.results.shape[0])  # The max integer on xaxis
        ypos = list(range(0, int(YMAX), int(YMAX/5)))
        yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling]
        pylab.yticks(ypos, yy, fontsize=16)

        #pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16)
        #pylab.title("%s echoes" %  filename.replace(".png", ""), fontsize=25)
        pylab.xlabel("Time (seconds)", fontsize=25)
        pylab.ylabel("Frequence (Hz)", fontsize=25)
        pylab.tight_layout()
        if filename:
            pylab.savefig(filename) 
開發者ID:cokelaer,項目名稱:spectrum,代碼行數:29,代碼來源:spectrogram.py

示例8: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot_confusion_matrix(self, label_test, fn_test):

        fn_preds = self.clf.predict(fn_test)
        acc = accuracy_score(label_test, fn_preds)

        cm_ = CM(label_test, fn_preds)
        cm = normalize(cm_.astype(np.float), axis=1, norm='l1')

        fig = pl.figure()
        ax = fig.add_subplot(111)
        cax = ax.matshow(cm)
        fig.colorbar(cax)
        for x in range(len(cm)):
            for y in range(len(cm)):
                ax.annotate(str("%.3f(%d)"%(cm[x][y], cm_[x][y])), xy=(y,x),
                            horizontalalignment='center',
                            verticalalignment='center',
                            fontsize=10)
        cm_cls =np.unique(np.hstack((label_test,fn_preds)))

        cls = []
        for c in cm_cls:
            cls.append(mapping[c])
        pl.yticks(range(len(cls)), cls)
        pl.ylabel('True label')
        pl.xticks(range(len(cls)), cls)
        pl.xlabel('Predicted label')
        pl.title('Mn Confusion matrix (%.3f)'%acc)

        pl.show() 
開發者ID:plastering,項目名稱:plastering,代碼行數:32,代碼來源:active_learning.py

示例9: dispersion_plot

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def dispersion_plot(text, words, ignore_case=False):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        import pylab
    except ImportError:
        raise ValueError('The plot function requires the matplotlib package (aka pylab).'
                     'See http://matplotlib.sourceforge.net/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = map(str.lower, words)
        text_to_comp = map(str.lower, text)
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = zip(*points)
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(range(len(words)), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title("Lexical Dispersion Plot")
    pylab.xlabel("Word Offset")
    pylab.show() 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:43,代碼來源:dispersion.py

示例10: malt_demo

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def malt_demo(nx=False):
    """
    A demonstration of the result of reading a dependency
    version of the first sentence of the Penn Treebank.
    """
    dg = DependencyGraph("""Pierre  NNP     2       NMOD
Vinken  NNP     8       SUB
,       ,       2       P
61      CD      5       NMOD
years   NNS     6       AMOD
old     JJ      2       NMOD
,       ,       2       P
will    MD      0       ROOT
join    VB      8       VC
the     DT      11      NMOD
board   NN      9       OBJ
as      IN      9       VMOD
a       DT      15      NMOD
nonexecutive    JJ      15      NMOD
director        NN      12      PMOD
Nov.    NNP     9       VMOD
29      CD      16      NMOD
.       .       9       VMOD
""")
    tree = dg.tree()
    print tree.pprint()
    if nx:
        #currently doesn't work
        import networkx as NX
        import pylab as P

        g = dg.nx_graph()
        g.info()
        pos = NX.spring_layout(g, dim=1)
        NX.draw_networkx_nodes(g, pos, node_size=50)
        #NX.draw_networkx_edges(g, pos, edge_color='k', width=8)
        NX.draw_networkx_labels(g, pos, dg.nx_labels)
        P.xticks([])
        P.yticks([])
        P.savefig('tree.png')
        P.show() 
開發者ID:blackye,項目名稱:luscan-devel,代碼行數:43,代碼來源:dependencygraph.py

示例11: graph

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def graph(text,text2=''): 
    pl.xticks(())
    pl.yticks(())
    pl.xlim(0,30)
    pl.ylim(0,20) 
    pl.plot([x,x],[0,3])
    pl.text(x,-2,"X");
    pl.text(0,x,"X")
    pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5) 
    pl.text(-5,10,text2,size=25) 
開發者ID:PacktPublishing,項目名稱:Python-for-Finance-Second-Edition,代碼行數:12,代碼來源:c10_20_6_figures.py

示例12: spikes_diagram

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def spikes_diagram(ts, gids, name, path):
    """
    Function for making spike diagrams
    :param ts:   (list) times
    :param gids: (list) global IDs of neurons
    :param name: (str) name of brain part
    :param path: (str) path to save results
    :return: None
    """
    pylab.figure()
    color_marker = "."
    color_bar = "blue"
    color_edge = "black"
    ylabel = "Neuron ID"
    hist_binwidth = 5.0
    location = pylab.axes([0.1, 0.3, 0.85, 0.6])
    pylab.plot(ts, gids, color_marker)
    pylab.ylabel(ylabel)
    xlim = pylab.xlim()
    pylab.xticks([])
    pylab.axes([0.1, 0.1, 0.85, 0.17])
    t_bins = numpy.arange(numpy.amin(ts), numpy.amax(ts), hist_binwidth)
    n, bins = pylab.histogram(ts, bins=t_bins)
    num_neurons = len(numpy.unique(gids))
    heights = (1000 * n / (hist_binwidth * num_neurons))
    # FixMe t_bins[:-1] should work without cutting the end value
    pylab.bar(t_bins[:-1], heights, width=hist_binwidth, color=color_bar, edgecolor=color_edge)
    pylab.yticks([int(a) for a in numpy.linspace(0.0, int(max(heights) * 1.1) + 5, 4)])
    pylab.ylabel("Rate (Hz)")
    pylab.xlabel("Time (ms)")
    pylab.grid(True)
    pylab.axes(location)
    pylab.title(name)
    pylab.xlim(xlim)
    pylab.draw()
    pylab.savefig("{0}{1}.png".format(path, name), dpi=dpi_n, format='png')
    pylab.close() 
開發者ID:research-team,項目名稱:NEUCOGAR,代碼行數:39,代碼來源:build_diagram.py

示例13: simple_lineal_regression

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def simple_lineal_regression(file_path):
        records = ReviewETL.load_file(file_path)
        data = [[record['review_count']] for record in records]
        ratings = [record['stars'] for record in records]

        num_testing_records = int(len(ratings) * 0.8)
        training_data = data[:num_testing_records]
        testing_data = data[num_testing_records:]
        training_ratings = ratings[:num_testing_records]
        testing_ratings = ratings[num_testing_records:]

        # Create linear regression object
        regr = linear_model.LinearRegression()

        # Train the model using the training sets
        regr.fit(training_data, training_ratings)

        # The coefficients
        print('Coefficients: \n', regr.coef_)
        print('Intercept: \n', regr.intercept_)
        # The root mean square error
        print("RMSE: %.2f"
              % (np.mean(
            (regr.predict(testing_data) - testing_ratings) ** 2)) ** 0.5)

        print(
            'Variance score: %.2f' % regr.score(testing_data, testing_ratings))

        # Plot outputs
        import pylab as pl

        pl.scatter(testing_data, testing_ratings, color='black')
        pl.plot(testing_data, regr.predict(testing_data), color='blue',
                linewidth=3)

        pl.xticks(())
        pl.yticks(())

        pl.show() 
開發者ID:melqkiades,項目名稱:yelp,代碼行數:41,代碼來源:review_analysis.py

示例14: plotHeatMap

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plotHeatMap(data, col='KL without null', label=''):

    #Compute and collate medians
    sel_cols = [x for x in data.columns if col in x]
    cmp_meds = data[sel_cols].median(axis=0)
    samples = sortSampleNames(getUniqueSamples(sel_cols))
    cell_lines = ['CHO', 'E14TG2A', 'BOB','RPE1', 'HAP1','K562','eCAS9','TREX2']
    sample_idxs = [(cell_lines.index(parseSampleName(x)[0]),x) for x in getUniqueSamples(sel_cols)]
    sample_idxs.sort()
    samples = [x[1] for x in sample_idxs]

    N = len(samples)
    meds = np.zeros((N,N))
    for colname in sel_cols:
        dir1, dir2 = getDirsFromFilename(colname.split('$')[-1])
        idx1, idx2 = samples.index(dir1), samples.index(dir2)
        meds[idx1,idx2] = cmp_meds[colname]
        meds[idx2,idx1] = cmp_meds[colname]

    for i in range(N):
        print(' '.join(['%.2f' % x for x in meds[i,:]]))
    print( np.median(meds[:,:-4],axis=0))

	#Display in Heatmap
    PL.figure(figsize=(5,5))
    PL.imshow(meds, cmap='hot_r', vmin = 0.0, vmax = 3.0, interpolation='nearest')
    PL.colorbar()
    PL.xticks(range(N))
    PL.yticks(range(N))
    PL.title("Median KL") # between %d mutational profiles (for %s with >%d mutated reads)" % (col, len(data), label, MIN_READS))
    ax1 = PL.gca()
    ax1.set_yticklabels([getSimpleName(x) for x in samples], rotation='horizontal')
    ax1.set_xticklabels([getSimpleName(x) for x in samples], rotation='vertical')
    PL.subplots_adjust(left=0.25,right=0.95,top=0.95, bottom=0.25)
    PL.show(block=False) 
    saveFig('median_kl_heatmap_cell_lines') 
開發者ID:felicityallen,項目名稱:SelfTarget,代碼行數:38,代碼來源:plot_kl_analysis.py

示例15: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import yticks [as 別名]
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(iris.target_names))
    plt.xticks(tick_marks, iris.target_names, rotation=45)
    plt.yticks(tick_marks, iris.target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label') 
開發者ID:kvoyager,項目名稱:GmdhPy,代碼行數:12,代碼來源:iris_recognition.py


注:本文中的pylab.yticks方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。