本文整理匯總了Python中pylab.xlabel方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.xlabel方法的具體用法?Python pylab.xlabel怎麽用?Python pylab.xlabel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.xlabel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_confusion_matrix
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例2: plot_roc_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例3: plot_learning_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_learning_curve(train_sizes, train_scores, test_scores):
"""plot_learning_curve."""
plt.figure(figsize=(15, 5))
plt.title('Learning Curve')
plt.xlabel("Training examples")
plt.ylabel("AUC ROC")
tr_ys = compute_stats(train_scores)
te_ys = compute_stats(test_scores)
plot_stats(train_sizes, tr_ys,
label='Training score',
color='navy')
plot_stats(train_sizes, te_ys,
label='Cross-validation score',
color='orange')
plt.grid(linestyle=":")
plt.legend(loc="best")
plt.show()
示例4: modBev_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def modBev_plot(ax, rangeX = [-10, 10 ], rangeXpx= [0, 400], numDeltaX = 5, rangeZ= [8,48 ], rangeZpx= [0, 800], numDeltaZ = 9, fontSize = None, xlabel = 'x [m]', ylabel = 'z [m]'):
'''
@param ax:
'''
#TODO: Configureabiltiy would be nice!
if fontSize==None:
fontSize = 8
ax.set_xlabel(xlabel, fontsize=fontSize)
ax.set_ylabel(ylabel, fontsize=fontSize)
zTicksLabels_val = np.linspace(rangeZpx[0], rangeZpx[1], numDeltaZ)
ax.set_yticks(zTicksLabels_val)
#ax.set_yticks([0, 100, 200, 300, 400, 500, 600, 700, 800])
xTicksLabels_val = np.linspace(rangeXpx[0], rangeXpx[1], numDeltaX)
ax.set_xticks(xTicksLabels_val)
xTicksLabels_val = np.linspace(rangeX[0], rangeX[1], numDeltaX)
zTicksLabels = map(lambda x: str(int(x)), xTicksLabels_val)
ax.set_xticklabels(zTicksLabels,fontsize=fontSize)
zTicksLabels_val = np.linspace(rangeZ[1],rangeZ[0], numDeltaZ)
zTicksLabels = map(lambda x: str(int(x)), zTicksLabels_val)
ax.set_yticklabels(zTicksLabels,fontsize=fontSize)
示例5: generate
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def generate(self, filename, show=True):
'''Generate a sample sequence, plot the resulting piano-roll and save
it as a MIDI file.
filename : string
A MIDI file will be created at this location.
show : boolean
If True, a piano-roll of the generated sequence will be shown.'''
piano_roll = self.generate_function()
midiwrite(filename, piano_roll, self.r, self.dt)
if show:
extent = (0, self.dt * len(piano_roll)) + self.r
pylab.figure()
pylab.imshow(piano_roll.T, origin='lower', aspect='auto',
interpolation='nearest', cmap=pylab.cm.gray_r,
extent=extent)
pylab.xlabel('time (s)')
pylab.ylabel('MIDI note number')
pylab.title('generated piano-roll')
示例6: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot(self):
"""
Plot startup data.
"""
import pylab
print("Plotting result...", end="")
avg_data = self.average_data()
avg_data = self.__sort_data(avg_data, False)
if len(self.raw_data) > 1:
err = self.stdev_data()
sorted_err = [err[k] for k in list(zip(*avg_data))[0]]
else:
sorted_err = None
pylab.barh(range(len(avg_data)), list(zip(*avg_data))[1],
xerr=sorted_err, align='center', alpha=0.4)
pylab.yticks(range(len(avg_data)), list(zip(*avg_data))[0])
pylab.xlabel("Average startup time (ms)")
pylab.ylabel("Plugins")
pylab.show()
print(" done.")
示例7: plot_it
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_it():
'''
helper function to gain insight on provided data sets background,
using pylab
'''
data1 = [[1.0, 1], [2.25, 3.5], [3.58333333333, 7.5], [4.95833333333, 13.0], [6.35833333333, 20.0], [7.775, 28.5], [9.20357142857, 38.5], [10.6410714286, 50.0], [12.085515873, 63.0], [13.535515873, 77.5]]
data2 = [[1.0, 1], [1.75, 2.5], [2.41666666667, 4.5], [3.04166666667, 7.0], [3.64166666667, 10.0], [4.225, 13.5], [4.79642857143, 17.5], [5.35892857143, 22.0], [5.91448412698, 27.0], [6.46448412698, 32.5], [7.00993867244, 38.5], [7.55160533911, 45.0], [8.09006687757, 52.0], [8.62578116328, 59.5], [9.15911449661, 67.5], [9.69036449661, 76.0], [10.2197762613, 85.0], [10.7475540391, 94.5], [11.2738698286, 104.5], [11.7988698286, 115.0]]
time1 = [item[0] for item in data1]
resource1 = [item[1] for item in data1]
time2 = [item[0] for item in data2]
resource2 = [item[1] for item in data2]
# plot in pylab (total resources over time)
pylab.plot(time1, resource1, 'o')
pylab.plot(time2, resource2, 'o')
pylab.title('Silly Homework')
pylab.legend(('Data Set no.1', 'Data Set no.2'))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.show()
#plot_it()
示例8: plot_question2
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_question2():
'''
graph of total resources generated as a function of time,
for four various upgrade_cost_increment values
'''
for upgrade_cost_increment in [0.0, 0.5, 1.0, 2.0]:
data = resources_vs_time(upgrade_cost_increment, 5)
time = [item[0] for item in data]
resource = [item[1] for item in data]
# plot in pylab (total resources over time for each constant)
pylab.plot(time, resource, 'o')
pylab.title('Silly Homework')
pylab.legend(('0.0', '0.5', '1.0', '2.0'))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.show()
#plot_question2()
# Question 3
示例9: plot_question3
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_question3():
'''
graph of total resources generated as a function of time;
for upgrade_cost_increment == 0
'''
data = resources_vs_time(0.0, 100)
time = [item[0] for item in data]
resource = [item[1] for item in data]
# plot in pylab on logarithmic scale (total resources over time for upgrade growth 0.0)
pylab.loglog(time, resource)
pylab.title('Silly Homework')
pylab.legend('0.0')
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.show()
#plot_question3()
# Question 4
示例10: plot_question7
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_question7():
'''
graph of total resources generated as a function of time,
for upgrade_cost_increment == 1
'''
data = resources_vs_time(1.0, 50)
time = [item[0] for item in data]
resource = [item[1] for item in data]
a, b, c = pylab.polyfit(time, resource, 2)
print 'polyfit with argument \'2\' fits the data, thus the degree of the polynomial is 2 (quadratic)'
# plot in pylab on logarithmic scale (total resources over time for upgrade growth 0.0)
#pylab.loglog(time, resource, 'o')
# plot fitting function
yp = pylab.polyval([a, b, c], time)
pylab.plot(time, yp)
pylab.scatter(time, resource)
pylab.title('Silly Homework, Question 7')
pylab.legend(('Resources for increment 1', 'Fitting function' + ', slope: ' + str(a)))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.grid()
pylab.show()
示例11: plot_entropy
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_entropy(self):
"""
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
plt.plot(
self.temperatures,
self.eV_to_J_per_mol / self.num_atoms * self.get_entropy_p(),
label="S$_p$",
)
plt.plot(
self.temperatures,
self.eV_to_J_per_mol / self.num_atoms * self.get_entropy_v(),
label="S$_V$",
)
plt.legend()
plt.xlabel("Temperature [K]")
plt.ylabel("Entropy [J K$^{-1}$ mol-atoms$^{-1}$]")
示例12: contour_entropy
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def contour_entropy(self):
"""
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
s_coeff = np.polyfit(self.volumes, self.entropy.T, deg=self._fit_order)
s_grid = np.array([np.polyval(s_coeff, v) for v in self.volumes]).T
x, y = self.meshgrid()
plt.contourf(x, y, s_grid)
plt.plot(self.get_minimum_energy_path(), self.temperatures)
plt.xlabel("Volume [$\AA^3$]")
plt.ylabel("Temperature [K]")
示例13: plot_contourf
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_contourf(self, ax=None, show_min_erg_path=False):
"""
Args:
ax:
show_min_erg_path:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
x, y = self.meshgrid()
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.contourf(x, y, self.energies)
if show_min_erg_path:
plt.plot(self.get_minimum_energy_path(), self.temperatures, "w--")
plt.xlabel("Volume [$\AA^3$]")
plt.ylabel("Temperature [K]")
return ax
示例14: plot_min_energy_path
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def plot_min_energy_path(self, *args, ax=None, **qwargs):
"""
Args:
*args:
ax:
**qwargs:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.xlabel("Volume [$\AA^3$]")
ax.ylabel("Temperature [K]")
ax.plot(self.get_minimum_energy_path(), self.temperatures, *args, **qwargs)
return ax
示例15: pcolor
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import xlabel [as 別名]
def pcolor(self, xname, yname, zname, *args, **kwargs):
"""Plot the results from the experiment.data pandas dataframe in a pcolor graph.
Store the plots in a plots list attribute."""
title = self.title
x, y, z = self._data[xname], self._data[yname], self._data[zname]
shape = (len(y.unique()), len(x.unique()))
diff = shape[0] * shape[1] - len(z)
Z = np.concatenate((z.values, np.zeros(diff))).reshape(shape)
df = pd.DataFrame(Z, index=y.unique(), columns=x.unique())
ax = sns.heatmap(df)
pl.title(title)
pl.xlabel(xname)
pl.ylabel(yname)
ax.invert_yaxis()
pl.plt.show()
self.plots.append(
{'type': 'pcolor', 'x': xname, 'y': yname, 'z': zname, 'args': args, 'kwargs': kwargs,
'ax': ax})
if ax.get_figure() not in self.figs:
self.figs.append(ax.get_figure())