本文整理匯總了Python中pylab.title方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.title方法的具體用法?Python pylab.title怎麽用?Python pylab.title使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.title方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_confusion_matrix
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_confusion_matrix(y_true, y_pred, size=None, normalize=False):
"""plot_confusion_matrix."""
cm = confusion_matrix(y_true, y_pred)
fmt = "%d"
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fmt = "%.2f"
xticklabels = list(sorted(set(y_pred)))
yticklabels = list(sorted(set(y_true)))
if size is not None:
plt.figure(figsize=(size, size))
heatmap(cm, xlabel='Predicted label', ylabel='True label',
xticklabels=xticklabels, yticklabels=yticklabels,
cmap=plt.cm.Blues, fmt=fmt)
if normalize:
plt.title("Confusion matrix (norm.)")
else:
plt.title("Confusion matrix")
plt.gca().invert_yaxis()
示例2: plot_roc_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例3: plot_learning_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_learning_curve(train_sizes, train_scores, test_scores):
"""plot_learning_curve."""
plt.figure(figsize=(15, 5))
plt.title('Learning Curve')
plt.xlabel("Training examples")
plt.ylabel("AUC ROC")
tr_ys = compute_stats(train_scores)
te_ys = compute_stats(test_scores)
plot_stats(train_sizes, tr_ys,
label='Training score',
color='navy')
plot_stats(train_sizes, te_ys,
label='Cross-validation score',
color='orange')
plt.grid(linestyle=":")
plt.legend(loc="best")
plt.show()
示例4: __init__
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def __init__(self, add_inputs, title='', **kwargs):
super(OffshorePlot, self).__init__(**kwargs)
self.fig = plt.figure(num=None, facecolor='w', edgecolor='k') #figsize=(13, 8), dpi=1000
self.shape_plot = self.fig.add_subplot(121)
self.objf_plot = self.fig.add_subplot(122)
self.targname = add_inputs
self.title = title
# Adding automatically the inputs
for i in add_inputs:
self.add(i, Float(0.0, iotype='in'))
#sns.set(style="darkgrid")
#self.pal = sns.dark_palette("skyblue", as_cmap=True)
plt.rc('lines', linewidth=1)
plt.ion()
self.force_execute = True
if not pa('fig').exists():
pa('fig').mkdir()
示例5: generate
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def generate(self, filename, show=True):
'''Generate a sample sequence, plot the resulting piano-roll and save
it as a MIDI file.
filename : string
A MIDI file will be created at this location.
show : boolean
If True, a piano-roll of the generated sequence will be shown.'''
piano_roll = self.generate_function()
midiwrite(filename, piano_roll, self.r, self.dt)
if show:
extent = (0, self.dt * len(piano_roll)) + self.r
pylab.figure()
pylab.imshow(piano_roll.T, origin='lower', aspect='auto',
interpolation='nearest', cmap=pylab.cm.gray_r,
extent=extent)
pylab.xlabel('time (s)')
pylab.ylabel('MIDI note number')
pylab.title('generated piano-roll')
示例6: plot_it
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_it():
'''
helper function to gain insight on provided data sets background,
using pylab
'''
data1 = [[1.0, 1], [2.25, 3.5], [3.58333333333, 7.5], [4.95833333333, 13.0], [6.35833333333, 20.0], [7.775, 28.5], [9.20357142857, 38.5], [10.6410714286, 50.0], [12.085515873, 63.0], [13.535515873, 77.5]]
data2 = [[1.0, 1], [1.75, 2.5], [2.41666666667, 4.5], [3.04166666667, 7.0], [3.64166666667, 10.0], [4.225, 13.5], [4.79642857143, 17.5], [5.35892857143, 22.0], [5.91448412698, 27.0], [6.46448412698, 32.5], [7.00993867244, 38.5], [7.55160533911, 45.0], [8.09006687757, 52.0], [8.62578116328, 59.5], [9.15911449661, 67.5], [9.69036449661, 76.0], [10.2197762613, 85.0], [10.7475540391, 94.5], [11.2738698286, 104.5], [11.7988698286, 115.0]]
time1 = [item[0] for item in data1]
resource1 = [item[1] for item in data1]
time2 = [item[0] for item in data2]
resource2 = [item[1] for item in data2]
# plot in pylab (total resources over time)
pylab.plot(time1, resource1, 'o')
pylab.plot(time2, resource2, 'o')
pylab.title('Silly Homework')
pylab.legend(('Data Set no.1', 'Data Set no.2'))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.show()
#plot_it()
示例7: plot_question2
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_question2():
'''
graph of total resources generated as a function of time,
for four various upgrade_cost_increment values
'''
for upgrade_cost_increment in [0.0, 0.5, 1.0, 2.0]:
data = resources_vs_time(upgrade_cost_increment, 5)
time = [item[0] for item in data]
resource = [item[1] for item in data]
# plot in pylab (total resources over time for each constant)
pylab.plot(time, resource, 'o')
pylab.title('Silly Homework')
pylab.legend(('0.0', '0.5', '1.0', '2.0'))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.show()
#plot_question2()
# Question 3
示例8: plot_question3
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_question3():
'''
graph of total resources generated as a function of time;
for upgrade_cost_increment == 0
'''
data = resources_vs_time(0.0, 100)
time = [item[0] for item in data]
resource = [item[1] for item in data]
# plot in pylab on logarithmic scale (total resources over time for upgrade growth 0.0)
pylab.loglog(time, resource)
pylab.title('Silly Homework')
pylab.legend('0.0')
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.show()
#plot_question3()
# Question 4
示例9: plot_question7
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_question7():
'''
graph of total resources generated as a function of time,
for upgrade_cost_increment == 1
'''
data = resources_vs_time(1.0, 50)
time = [item[0] for item in data]
resource = [item[1] for item in data]
a, b, c = pylab.polyfit(time, resource, 2)
print 'polyfit with argument \'2\' fits the data, thus the degree of the polynomial is 2 (quadratic)'
# plot in pylab on logarithmic scale (total resources over time for upgrade growth 0.0)
#pylab.loglog(time, resource, 'o')
# plot fitting function
yp = pylab.polyval([a, b, c], time)
pylab.plot(time, yp)
pylab.scatter(time, resource)
pylab.title('Silly Homework, Question 7')
pylab.legend(('Resources for increment 1', 'Fitting function' + ', slope: ' + str(a)))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.grid()
pylab.show()
示例10: pcolor
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def pcolor(self, xname, yname, zname, *args, **kwargs):
"""Plot the results from the experiment.data pandas dataframe in a pcolor graph.
Store the plots in a plots list attribute."""
title = self.title
x, y, z = self._data[xname], self._data[yname], self._data[zname]
shape = (len(y.unique()), len(x.unique()))
diff = shape[0] * shape[1] - len(z)
Z = np.concatenate((z.values, np.zeros(diff))).reshape(shape)
df = pd.DataFrame(Z, index=y.unique(), columns=x.unique())
ax = sns.heatmap(df)
pl.title(title)
pl.xlabel(xname)
pl.ylabel(yname)
ax.invert_yaxis()
pl.plt.show()
self.plots.append(
{'type': 'pcolor', 'x': xname, 'y': yname, 'z': zname, 'args': args, 'kwargs': kwargs,
'ax': ax})
if ax.get_figure() not in self.figs:
self.figs.append(ax.get_figure())
示例11: plot_Geweke
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_Geweke(parameterdistribution,parametername):
'''Input: Takes a list of sampled values for a parameter and his name as a string
Output: Plot as seen for e.g. in BUGS or PyMC'''
import matplotlib.pyplot as plt
# perform the Geweke test
Geweke_values = _Geweke(parameterdistribution)
# plot the results
fig = plt.figure()
plt.plot(Geweke_values,label=parametername)
plt.legend()
plt.title(parametername + '- Geweke_Test')
plt.xlabel('Subinterval')
plt.ylabel('Geweke Test')
plt.ylim([-3,3])
# plot the delimiting line
plt.plot( [2]*len(Geweke_values), 'r-.')
plt.plot( [-2]*len(Geweke_values), 'r-.')
示例12: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot(self):
""" Plot the layer data (for debugging)
:return: The current figure
"""
import pylab as pl
aspect = self.nrows / float(self.ncols)
figure_width = 6 #inches
rows = max(1, int(np.sqrt(self.nlayers)))
cols = int(np.ceil(self.nlayers/rows))
# noinspection PyUnresolvedReferences
pallette = {i:rgb for (i, rgb) in enumerate(pl.cm.jet(np.linspace(0, 1, 4), bytes=True))}
f, a = pl.subplots(rows, cols)
f.set_size_inches(6 * cols, 6 * rows)
a = a.flatten()
for i, label in enumerate(self.label_names):
pl.sca(a[i])
pl.title(label)
pl.imshow(self.color_data)
pl.imshow(colorize(self.label_data[:, :, i], pallette), alpha=0.5)
# axis('off')
return f
示例13: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot(self, overlay_alpha=0.5):
import pylab as pl
rows = int(sqrt(self.layers()))
cols = int(ceil(self.layers()/rows))
for i in range(rows*cols):
pl.subplot(rows, cols, i+1)
pl.axis('off')
if i >= self.layers():
continue
pl.title('{}({})'.format(self.labels[i], i))
pl.imshow(self.image)
pl.imshow(colorize(self.features[i].argmax(0),
colors=np.array([[0, 0, 255],
[0, 255, 255],
[255, 255, 0],
[255, 0, 0]])),
alpha=overlay_alpha)
示例14: plot_rectified
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_rectified(self):
import pylab
pylab.title('rectified')
pylab.imshow(self.rectified)
for line in self.vlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例15: plot_original
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import title [as 別名]
def plot_original(self):
import pylab
pylab.title('original')
pylab.imshow(self.data)
for line in self.lines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)
for line in self.vlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)