本文整理匯總了Python中pylab.tight_layout方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.tight_layout方法的具體用法?Python pylab.tight_layout怎麽用?Python pylab.tight_layout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.tight_layout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_hits
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_hits(filename_fil, filename_dat):
""" Plot the hits in a .dat file. """
table = find_event.read_dat(filename_dat)
print(table)
plt.figure(figsize=(10, 8))
N_hit = len(table)
if N_hit > 10:
print("Warning: More than 10 hits found. Only plotting first 10")
N_hit = 10
for ii in range(N_hit):
plt.subplot(N_hit, 1, ii+1)
plot_event.plot_hit(filename_fil, filename_dat, ii)
plt.tight_layout()
plt.savefig(filename_dat.replace('.dat', '.png'))
plt.show()
示例2: heatmap
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def heatmap(df,fname=None,cmap='seismic',log=False):
"""Plot a heat map"""
from matplotlib.colors import LogNorm
f=plt.figure(figsize=(8,8))
ax=f.add_subplot(111)
norm=None
df=df.replace(0,.1)
if log==True:
norm=LogNorm(vmin=df.min().min(), vmax=df.max().max())
hm = ax.pcolor(df,cmap=cmap,norm=norm)
plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm)
plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90)
#ax.axvline(4, color='gray'); ax.axvline(8, color='gray')
plt.tight_layout()
if fname != None:
f.savefig(fname+'.png')
return ax
示例3: plot_fractions
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_fractions(df, label=None):
"""Process results of multiple mappings to get fractions
of each annotations mapped
label: plot this sample only"""
fig,ax = plt.subplots(figsize=(8,8))
df = df.set_index('label')
df = df._get_numeric_data()
if len(df) == 1:
label = df.index[0]
if label != None:
ax = df.T.plot(y=label,kind='pie',colormap='Spectral',autopct='%.1f%%',
startangle=0, labels=None,legend=True,pctdistance=1.1,
fontsize=10, ax=ax)
else:
ax = df.plot(kind='barh',stacked=True,linewidth=0,cmap='Spectral',ax=ax)
#ax.legend(ncol=2)
ax.set_position([0.2,0.1,0.6,0.8])
ax.legend(loc="best",bbox_to_anchor=(1.0, .9))
plt.title('fractions mapped')
#plt.tight_layout()
return fig
示例4: plot_read_count_dists
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_read_count_dists(counts, h=8, n=50):
"""Boxplots of read count distributions """
scols,ncols = base.get_column_names(counts)
df = counts.sort_values(by='mean_norm',ascending=False)[:n]
df = df.set_index('name')[ncols]
t = df.T
w = int(h*(len(df)/60.0))+4
fig, ax = plt.subplots(figsize=(w,h))
if len(scols) > 1:
sns.stripplot(data=t,linewidth=1.0,palette='coolwarm_r')
ax.xaxis.grid(True)
else:
df.plot(kind='bar',ax=ax)
sns.despine(offset=10,trim=True)
ax.set_yscale('log')
plt.setp(ax.xaxis.get_majorticklabels(), rotation=90)
plt.ylabel('read count')
#print (df.index)
#plt.tight_layout()
fig.subplots_adjust(bottom=0.2,top=0.9)
return fig
示例5: summarise_reads
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def summarise_reads(path):
"""Count reads in all files in path"""
resultfile = os.path.join(path, 'read_stats.csv')
files = glob.glob(os.path.join(path,'*.fastq'))
vals=[]
rl=[]
for f in files:
label = os.path.splitext(os.path.basename(f))[0]
s = utils.fastq_to_dataframe(f)
l = len(s)
vals.append([label,l])
print (label, l)
df = pd.DataFrame(vals,columns=['path','total reads'])
df.to_csv(resultfile)
df.plot(x='path',y='total reads',kind='barh')
plt.tight_layout()
plt.savefig(os.path.join(path,'total_reads.png'))
#df = pd.concat()
return df
示例6: plot_pca
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_pca(pX, palette='Spectral', labels=None, ax=None, colors=None):
"""Plot PCA result, input should be a dataframe"""
if ax==None:
fig,ax=plt.subplots(1,1,figsize=(6,6))
cats = pX.index.unique()
colors = sns.mpl_palette(palette, len(cats)+1)
print (len(cats), len(colors))
for c, i in zip(colors, cats):
#print (i, len(pX.ix[i]))
#if not i in pX.index: continue
ax.scatter(pX.ix[i, 0], pX.ix[i, 1], color=c, s=90, label=i,
lw=.8, edgecolor='black', alpha=0.8)
ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
i=0
if labels is not None:
for n, point in pX.iterrows():
l=labels[i]
ax.text(point[0]+.1, point[1]+.1, str(l),fontsize=(9))
i+=1
ax.legend(fontsize=10,bbox_to_anchor=(1.5, 1.05))
sns.despine()
plt.tight_layout()
return
示例7: plot_confusion_matrices
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_confusion_matrices(y_true, y_pred, size=12):
"""plot_confusion_matrices."""
plt.figure(figsize=(size, size))
plt.subplot(121)
plot_confusion_matrix(y_true, y_pred, normalize=False)
plt.subplot(122)
plot_confusion_matrix(y_true, y_pred, normalize=True)
plt.tight_layout(w_pad=5)
plt.show()
示例8: plot_aucs
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_aucs(y_true, y_score, size=12):
"""plot_confusion_matrices."""
plt.figure(figsize=(size, size / 2.0))
plt.subplot(121, aspect='equal')
plot_roc_curve(y_true, y_score)
plt.subplot(122, aspect='equal')
plot_precision_recall_curve(y_true, y_score)
plt.tight_layout(w_pad=5)
plt.show()
示例9: plot_mesh
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_mesh(mesh, *whats, show=True, plot=None):
for what in [update_plot] + list(whats):
plot = what(mesh, plot)
if show:
li = max(plot[1][1], plot[1][3], plot[1][5])
plot[0].auto_scale_xyz([0, li], [0, li], [0, li])
pl.tight_layout()
pl.show()
return plot
示例10: solid_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def solid_plot():
# reference values, see
sref=0.0924102
wref=0.000170152
# List of the element types to process (text files)
eltyps=["C3D8",
"C3D8R",
"C3D8I",
"C3D20",
"C3D20R",
"C3D4",
"C3D10"]
pylab.figure(figsize=(10, 5.0), dpi=100)
pylab.subplot(1,2,1)
pylab.title("Stress")
# pylab.hold(True) # deprecated
for elty in eltyps:
data = numpy.genfromtxt(elty+".txt")
pylab.plot(data[:,1],data[:,2]/sref,"o-")
pylab.xscale("log")
pylab.xlabel('Number of nodes')
pylab.ylabel('Max $\sigma / \sigma_{\mathrm{ref}}$')
pylab.grid(True)
pylab.subplot(1,2,2)
pylab.title("Displacement")
# pylab.hold(True) # deprecated
for elty in eltyps:
data = numpy.genfromtxt(elty+".txt")
pylab.plot(data[:,1],data[:,3]/wref,"o-")
pylab.xscale("log")
pylab.xlabel('Number of nodes')
pylab.ylabel('Max $u / u_{\mathrm{ref}}$')
pylab.ylim([0,1.2])
pylab.grid(True)
pylab.legend(eltyps,loc="lower right")
pylab.tight_layout()
pylab.savefig("solid.svg",format="svg")
# pylab.show()
# Move new files and folders to 'Refs'
示例11: plot_parametertrace_algorithms
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_parametertrace_algorithms(result_lists, algorithmnames, spot_setup,
fig_name='parametertrace_algorithms.png'):
"""Example Plot as seen in the SPOTPY Documentation"""
import matplotlib.pyplot as plt
font = {'family' : 'calibri',
'weight' : 'normal',
'size' : 20}
plt.rc('font', **font)
fig=plt.figure(figsize=(17,5))
subplots=len(result_lists)
parameter = spotpy.parameter.get_parameters_array(spot_setup)
rows=len(parameter['name'])
for j in range(rows):
for i in range(subplots):
ax = plt.subplot(rows,subplots,i+1+j*subplots)
data=result_lists[i]['par'+parameter['name'][j]]
ax.plot(data,'b-')
if i==0:
ax.set_ylabel(parameter['name'][j])
rep = len(data)
if i>0:
ax.yaxis.set_ticks([])
if j==rows-1:
ax.set_xlabel(algorithmnames[i-subplots])
else:
ax.xaxis.set_ticks([])
ax.plot([1]*rep,'r--')
ax.set_xlim(0,rep)
ax.set_ylim(parameter['minbound'][j],parameter['maxbound'][j])
#plt.tight_layout()
fig.savefig(fig_name, bbox_inches='tight')
示例12: plot_objectivefunctiontraces
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_objectivefunctiontraces(results,evaluation,algorithms,fig_name='Like_trace.png'):
import matplotlib.pyplot as plt
from matplotlib import colors
cnames=list(colors.cnames)
font = {'family' : 'calibri',
'weight' : 'normal',
'size' : 20}
plt.rc('font', **font)
fig=plt.figure(figsize=(16,3))
xticks=[5000,15000]
for i in range(len(results)):
ax = plt.subplot(1,len(results),i+1)
likes=calc_like(results[i],evaluation,spotpy.objectivefunctions.rmse)
ax.plot(likes,'b-')
ax.set_ylim(0,25)
ax.set_xlim(0,len(results[0]))
ax.set_xlabel(algorithms[i])
ax.xaxis.set_ticks(xticks)
if i==0:
ax.set_ylabel('RMSE')
ax.yaxis.set_ticks([0,10,20])
else:
ax.yaxis.set_ticks([])
plt.tight_layout()
fig.savefig(fig_name)
示例13: plot_sample_variation
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_sample_variation(df):
fig,axs=plt.subplots(2,1,figsize=(6,6))
axs=axs.flat
cols,ncols = mirdeep2.get_column_names(m)
x = m.ix[2][cols]
x.plot(kind='bar',ax=axs[0])
x2 = m.ix[2][ncols]
x2.plot(kind='bar',ax=axs[1])
sns.despine(trim=True,offset=10)
plt.tight_layout()
return fig
示例14: plot_sample_counts
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def plot_sample_counts(counts):
fig,ax = plt.subplots(figsize=(10,6))
scols,ncols = base.get_column_names(counts)
counts[scols].sum().plot(kind='bar',ax=ax)
plt.title('total counts per sample (unnormalised)')
plt.tight_layout()
return fig
示例15: analyse_results
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tight_layout [as 別名]
def analyse_results(k,n,outpath=None):
"""Summarise multiple results"""
if outpath != None:
os.chdir(outpath)
#add mirbase info
k = k.merge(mirbase,left_on='name',right_on='mature1')
ky1 = 'unique reads'
ky2 = 'read count' #'RC'
cols = ['name','freq','mean read count','mean_norm','total','perc','mirbase_id']
print
print ('found:')
idcols,normcols = get_column_names(k)
final = filter_expr_results(k,freq=.8,meanreads=200)
print (final[cols])
print ('-------------------------------')
print ('%s total' %len(k))
print ('%s with >=10 mean reads' %len(k[k['mean read count']>=10]))
print ('%s found in 1 sample only' %len(k[k['freq']==1]))
print ('top 10 account for %2.2f' %k['perc'][:10].sum())
fig,ax = plt.subplots(nrows=1, ncols=1, figsize=(8,6))
k.set_index('name')['total'][:10].plot(kind='barh',colormap='Spectral',ax=ax,log=True)
plt.tight_layout()
fig.savefig('srnabench_top_known.png')
#fig = plot_read_count_dists(final)
#fig.savefig('srnabench_known_counts.png')
fig,ax = plt.subplots(figsize=(10,6))
k[idcols].sum().plot(kind='bar',ax=ax)
fig.savefig('srnabench_total_persample.png')
print
k.to_csv('srnabench_known_all.csv',index=False)
return k