本文整理匯總了Python中pylab.tick_params方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.tick_params方法的具體用法?Python pylab.tick_params怎麽用?Python pylab.tick_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.tick_params方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compareMHlines
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tick_params [as 別名]
def compareMHlines(all_result_outputs, label='', y_axis = 'Percent Non-Null Reads', data_label='RegrLines'):
color_map = {'K562':'b','K562_1600x':'lightblue', 'BOB':'g', 'RPE1':'purple', 'TREX2':'k', 'TREX2_2A':'gray', 'HAP1':'r', 'E14TG2A':'orange','eCAS9':'c', 'WT':'pink', 'CHO':'salmon'}
lysty_map = {2:'--',3:'--',5:'--',7:'-',10:'-.',16:':',20:':'}
dirnames = [x[1] for x in all_result_outputs]
lystys = [lysty_map[parseSampleName(x)[1]] for x in dirnames]
clrs = [color_map[parseSampleName(x)[0]] for x in dirnames]
for mh_len in [9]:
PL.figure()
regr_lines = [x[0][data_label][mh_len] for x in all_result_outputs]
for dirname, regr_line,lysty,clr in zip(dirnames,regr_lines,lystys, clrs):
PL.plot(regr_line[0], regr_line[1], label='%s (R=%.1f)' % (getSimpleName(dirname), regr_line[2]), linewidth=2, color=clr, linestyle=lysty, alpha=0.5 )
PL.xlabel('Distance between nearest ends of microhomologous sequences',fontsize=14)
PL.ylabel('Corresponding microhomology-mediated deletion\n as percent of total mutated reads',fontsize=14)
PL.tick_params(labelsize=16)
PL.legend(loc='upper right')
PL.ylim((0,70))
PL.xlim((0,20))
PL.xticks(range(0,21,5))
PL.title('Microhomology Length %d' % mh_len,fontsize=18)
PL.show(block=False)
saveFig('mh_regr_lines_all_samples__%d' % mh_len)
示例2: compareMHK562lines
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tick_params [as 別名]
def compareMHK562lines(all_result_outputs, label='', y_axis = 'Percent Non-Null Reads', data_label='RegrLines'):
dirnames = [x[1] for x in all_result_outputs]
clrs = ['silver','grey','darkgreen','green','lightgreen','royalblue','dodgerblue','skyblue','mediumpurple','orchid','red','orange','salmon']
fig = PL.figure(figsize=(6,6))
leg_handles = []
mh_lens = [3,4,5,6,7,8,9,10,11,12,13,14,15]
for mh_len, clr in zip(mh_lens,clrs):
regr_lines = [x[0][data_label][mh_len] for x in all_result_outputs]
mean_line = np.mean([x[:2] for x in regr_lines], axis=0)
leg_handles.append(PL.plot(mean_line[0], mean_line[1], label='MH Len=%d (R=%.1f)' % (mh_len,np.mean([x[2] for x in regr_lines])) , linewidth=2, color=clr )[0])
PL.xlabel('Distance between nearest ends of\nmicrohomologous sequences',fontsize=16)
PL.ylabel('Correspondng microhomology-mediated deletion\n as percent of total mutated reads',fontsize=16)
PL.tick_params(labelsize=16)
PL.legend(handles=[x for x in reversed(leg_handles)], loc='upper right')
PL.ylim((0,80))
PL.xlim((0,20))
PL.xticks(range(0,21,5))
PL.show(block=False)
saveFig('mh_regr_lines_K562')
示例3: embed
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tick_params [as 別名]
def embed(words, matrix, classes, usermodel, fname):
perplexity = int(len(words) ** 0.5) # We set perplexity to a square root of the words number
embedding = TSNE(n_components=2, perplexity=perplexity, metric='cosine', n_iter=500, init='pca')
y = embedding.fit_transform(matrix)
print('2-d embedding finished', file=sys.stderr)
class_set = [c for c in set(classes)]
colors = plot.cm.rainbow(np.linspace(0, 1, len(class_set)))
class2color = [colors[class_set.index(w)] for w in classes]
xpositions = y[:, 0]
ypositions = y[:, 1]
seen = set()
plot.clf()
for color, word, class_label, x, y in zip(class2color, words, classes, xpositions, ypositions):
plot.scatter(x, y, 20, marker='.', color=color,
label=class_label if class_label not in seen else "")
seen.add(class_label)
lemma = word.split('_')[0].replace('::', ' ')
mid = len(lemma) / 2
mid *= 4 # TODO Should really think about how to adapt this variable to the real plot size
plot.annotate(lemma, xy=(x - mid, y), size='x-large', weight='bold', fontproperties=font,
color=color)
plot.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)
plot.tick_params(axis='y', which='both', left=False, right=False, labelleft=False)
plot.legend(loc='best')
plot.savefig(root + 'data/images/tsneplots/' + usermodel + '_' + fname + '.png', dpi=150,
bbox_inches='tight')
plot.close()
plot.clf()
示例4: plotPercScatterAnalysis
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import tick_params [as 別名]
def plotPercScatterAnalysis(data, label='test', y_axis = 'Percent Non-Null Reads', plot_scatters=False, plot_regr_lines=False, scatter_mh_lens=[], mh_lens=[9]):
plot_dir = getPlotDir()
regr_lines = {}
for mh_len in mh_lens:
mh_data = data.loc[data['MH Len'] == mh_len]
mh_rdata = mh_data.loc[(mh_data['MH Dist'] >= 0) & (mh_data['MH Dist'] < (30-mh_len)) ]
regr = linear_model.LinearRegression()
rx, ry = mh_rdata[['MH Dist']], mh_rdata[[y_axis]] #np.log(mh_rdata[[y_axis]])
regr.fit(rx, ry)
corr = scipy.stats.pearsonr(rx, ry)
min_x, max_x = rx.min()[0], rx.max()[0]
x_pts = [min_x, max_x]
regr_lines[mh_len] = (x_pts,[regr.predict(x)[0] for x in x_pts],corr[0])
if plot_scatters and mh_len in scatter_mh_lens:
fig = PL.figure(figsize=(5,5))
PL.plot( mh_data['MH Dist'], mh_data[y_axis], '.', alpha=0.4 )
PL.plot(regr_lines[mh_len][0],regr_lines[mh_len][1],'dodgerblue',linewidth=3)
PL.xlabel('Distance between nearest ends of\nmicrohomologous sequences',fontsize=14)
PL.ylabel('Percent of mutated reads of corresponding\nMH-mediated deletion',fontsize=14)
PL.tick_params(labelsize=14)
PL.xlim((0,20))
PL.title('Microhomology of length %d (r=%.2f)' % (mh_len,corr[0]),fontsize=14)
PL.show(block=False)
saveFig('mh_scatter_len%d_%s' % (mh_len,label.split('/')[-1]))
if plot_regr_lines:
fig = PL.figure()
output_data = {}
for mh_len in mh_lens:
fit_data = regr_lines[mh_len]
if mh_len > 15:
continue
lsty = '--' if mh_len < 9 else '-'
PL.plot(fit_data[0], fit_data[1], linewidth=2, linestyle=lsty, label='MH length %d (R=%.1f)' % (mh_len, fit_data[2]))
PL.title(label,fontsize=18)
PL.xlabel('Distance between nearest ends of\nmicrohomologous sequences',fontsize=14)
PL.ylabel('Percent of mutated reads of corresponding\nMH-mediated deletion',fontsize=14)
PL.tick_params(labelsize=18)
PL.legend()
PL.ylim((0,100))
PL.show(block=False)
saveFig(plot_dir + '/mh_scatter_all_len_%s' % label.split('/')[-1])
return regr_lines