本文整理匯總了Python中pylab.text方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.text方法的具體用法?Python pylab.text怎麽用?Python pylab.text使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.text方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_proj
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def test_proj():
import pylab
M = test_proj_make_M()
ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
[0,0,0,0,0, 1,1,1,1,1]
xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
#
test_proj_draw_axes(M, s=400)
txs, tys, tzs = proj_transform(xs, ys, zs, M)
ixs, iys, izs = inv_transform(txs, tys, tzs, M)
pylab.scatter(txs, tys, c=tzs)
pylab.plot(txs, tys, c='r')
for x, y, t in zip(txs, tys, ts):
pylab.text(x, y, t)
pylab.xlim(-0.2, 0.2)
pylab.ylim(-0.2, 0.2)
pylab.show()
示例2: plot_supervised_chart
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plot_supervised_chart(annotate=False):
create_base(supervised=True)
if annotate:
fontdict = dict(color='r', weight='bold', size=14)
pl.text(1.9, 4.55, 'X = vec.fit_transform(input)',
fontdict=fontdict,
rotation=20, ha='left', va='bottom')
pl.text(3.7, 3.2, 'clf.fit(X, y)',
fontdict=fontdict,
rotation=20, ha='left', va='bottom')
pl.text(1.7, 1.5, 'X_new = vec.transform(input)',
fontdict=fontdict,
rotation=20, ha='left', va='bottom')
pl.text(6.1, 1.5, 'y_new = clf.predict(X_new)',
fontdict=fontdict,
rotation=20, ha='left', va='bottom')
示例3: i1RepeatNucleotides
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def i1RepeatNucleotides(data, label=''):
merged_data = mergeWithIndelData(data)
nt_mean_percs, nts = [], ['A','T','G','C']
for nt in nts:
nt_data = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]
nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb']*100.0/nt_data['Total reads']).mean())
PL.figure(figsize=(3,3))
PL.bar(range(4),nt_mean_percs)
for i in range(4):
PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
PL.xticks(range(4),nts)
PL.ylim((0,26))
PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
PL.show(block=False)
saveFig('i1_rtp_nt_%s' % label)
示例4: plotMergedI1Repeats
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plotMergedI1Repeats(all_result_outputs, label=''):
merged_data = mergeSamples(all_result_outputs, ['I1_Rpt Left Reads - NonAmb','Total reads'], data_label='i1IndelData', merge_on=['Oligo Id','Repeat Nucleotide Left'])
nt_mean_percs, nts = [], ['A','T','G','C']
for nt in nts:
nt_data = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]
nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb Sum']*100.0/nt_data['Total reads Sum']).mean())
PL.figure(figsize=(3,3))
PL.bar(range(4),nt_mean_percs)
for i in range(4):
PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
PL.xticks(range(4),nts)
PL.ylim((0,26))
PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
PL.show(block=False)
saveFig('i1_rtp_nt')
示例5: plotInFrame
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plotInFrame(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids, pred_results_dir):
PL.figure(figsize=(4.2,4.2))
data = pd.read_csv(pred_results_dir + '/old_new_kl_predicted_summaries.txt', sep='\t').fillna(-1.0)
label1, label2 = 'New 2x800x In Frame Perc', 'New 1600x In Frame Perc'
xdata, ydata = data[label1], data[label2]
PL.plot(xdata,ydata, '.', label='Synthetic between library (R=%.2f)' % pearsonr(xdata,ydata)[0], color='C0',alpha=0.15)
PL.plot(overbeek_inframes, ours_inframes, '^', label='Synthetic vs Endogenous (R=%.2f)' % pearsonr(overbeek_inframes, ours_inframes)[0], color='C1')
for (x,y,id) in zip(overbeek_inframes, ours_inframes, oof_sel_overbeek_ids):
if abs(x-y) > 25.0: PL.text(x,y,id)
PL.plot([0,100],[0,100],'k--')
PL.ylabel('Percent In-Frame Mutations')
PL.xlabel('Percent In-Frame Mutations')
PL.legend()
PL.xticks([],[])
PL.yticks([],[])
PL.show(block=False)
saveFig('in_frame_full_scatter')
示例6: plotInFrameCorr
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plotInFrameCorr(data):
shi_data = pd.read_csv(getHighDataDir() + '/shi_deepseq_frame_shifts.txt',sep='\t')
label1, label2 = 'New In Frame Perc', 'Predicted In Frame Per'
PL.figure(figsize=(4,4))
xdata, ydata = data[label1], data[label2]
PL.plot(xdata,ydata, '.',alpha=0.15)
PL.plot(shi_data['Measured Frame Shift'], shi_data['Predicted Frame Shift'], '^', color='orange')
for x,y,id in zip(shi_data['Measured Frame Shift'], shi_data['Predicted Frame Shift'],shi_data['ID']):
if x-y > 10:
PL.text(x,y,id.split('/')[1][:-21])
PL.plot([0,100],[0,100],'k--')
PL.title('R=%.3f' % (pearsonr(xdata, ydata)[0]))
PL.xlabel('percent in frame mutations (measured)')
PL.ylabel('percent in frame mutations (predicted)')
PL.ylim((0,80))
PL.xlim((0,80))
PL.show(block=False)
saveFig('in_frame_corr_%s_%s' % (label1.replace(' ','_'),label2.replace(' ','_')))
示例7: hist_overflow
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def hist_overflow(val, val_max, **kwds):
""" Make a histogram with an overflow bar above val_max """
import pylab, numpy
overflow = len(val[val>=val_max])
pylab.hist(val[val<val_max], **kwds)
if 'color' in kwds:
color = kwds['color']
else:
color = None
if overflow > 0:
rect = pylab.bar(val_max+0.05, overflow, .5, color=color)[0]
pylab.text(rect.get_x(),
1.10*rect.get_height(), '%s+' % val_max)
示例8: calc_fig_ratio
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def calc_fig_ratio(ncols, nrows, plot_size, verbose=False):
"""
calculate size ratio for given number of columns (ncols) and rows (nrows)
with plot_size as maximum width and length
"""
ratio = ncols*1./nrows
if verbose:
text = " ".join([ncols, nrows, ratio])
logprint(text, start=False, printing=True)
if ncols >= nrows:
figsize_x = plot_size
figsize_y = plot_size / ratio
else:
figsize_x = plot_size * ratio
figsize_y = plot_size
return figsize_x, figsize_y
示例9: concatenate_files
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def concatenate_files(file_list, combi_filename="temp_combined.fasta", verbose=False):
"""
concatenate content of all files in file_list into a combined file named combi_filename
"""
out_file = open(combi_filename, 'w')
text = ""
for item in file_list:
if verbose:
text += item + " "
print item,
# read in_file linewise and write to out_file
in_file = open(item, 'rb')
for line in in_file:
out_file.write(line.strip()+"\n")
in_file.close()
out_file.close()
if verbose:
logprint(text, start=False, printing=False)
return combi_filename
示例10: test_proj_draw_axes
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def test_proj_draw_axes(M, s=1):
import pylab
xs, ys, zs = [0, s, 0, 0], [0, 0, s, 0], [0, 0, 0, s]
txs, tys, tzs = proj_transform(xs, ys, zs, M)
o, ax, ay, az = (txs[0], tys[0]), (txs[1], tys[1]), \
(txs[2], tys[2]), (txs[3], tys[3])
lines = [(o, ax), (o, ay), (o, az)]
ax = pylab.gca()
linec = LineCollection(lines)
ax.add_collection(linec)
for x, y, t in zip(txs, tys, ['o', 'x', 'y', 'z']):
pylab.text(x, y, t)
示例11: plot_ax
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plot_ax(dec, name):
pl.plot([dec[0], dec[0]], [dec[1] - da, dec[1] + da], 'k', alpha=0.5)
pl.plot([dec[0] - da, dec[0] + da], [dec[1], dec[1]], 'k', alpha=0.5)
pl.text(dec[0] - .5, dec[1] + 2, name)
##############################################################################
# Fig 1 : plots source and target samples
# ---------------------------------------
示例12: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plot(self, bgimage=None):
import pylab as pl
self._plot_background(bgimage)
ax = pl.gca()
y0, y1 = pl.ylim()
# r is the width of the thick line we use to show the facade colors
r = 5
patch = pl.Rectangle((self.facade_left + r, self.sky_line + r),
self.width - 2 * r,
self.door_line - self.sky_line - 2 * r,
color=self.color, fill=False, lw=2 * r)
ax.add_patch(patch)
pl.text((self.facade_right + self.facade_left) / 2.,
(self.door_line + self.sky_line) / 2.,
'$\sigma^2={:0.2f}$'.format(self.uncertainty_for_windows()))
patch = pl.Rectangle((self.facade_left + r, self.door_line + r),
self.width - 2 * r,
y0 - self.door_line - 2 * r,
color=self.mezzanine_color, fill=False, lw=2 * r)
ax.add_patch(patch)
# Plot the left and right edges in yellow
pl.vlines([self.facade_left, self.facade_right], self.sky_line, y0, colors='yellow')
# Plot the door line and the roof line
pl.hlines([self.door_line, self.sky_line], self.facade_left, self.facade_right, linestyles='dashed',
colors='yellow')
self.window_grid.plot()
示例13: plot_facade_cuts
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def plot_facade_cuts(self):
facade_sig = self.facade_edge_scores.sum(0)
facade_cuts = find_facade_cuts(facade_sig, dilation_amount=self.facade_merge_amount)
mu = np.mean(facade_sig)
sigma = np.std(facade_sig)
w = self.rectified.shape[1]
pad=10
gs1 = pl.GridSpec(5, 5)
gs1.update(wspace=0.5, hspace=0.0) # set the spacing between axes.
pl.subplot(gs1[:3, :])
pl.imshow(self.rectified)
pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
pl.axis('off')
pl.xlim(-pad, w+pad)
pl.subplot(gs1[3:, :], sharex=pl.gca())
pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
pl.fill_between(np.arange(w), 0, np.clip(facade_sig, 0, mu+sigma), color='blue')
pl.plot(np.arange(w), facade_sig, color='blue')
pl.vlines(facade_cuts, facade_sig[facade_cuts], pl.xlim()[1], lw=2, color='black')
pl.scatter(facade_cuts, facade_sig[facade_cuts])
pl.axis('off')
pl.hlines(mu, 0, w, linestyle='dashed', color='black')
pl.text(0, mu, '$\mu$ ', ha='right')
pl.hlines(mu + sigma, 0, w, linestyle='dashed', color='gray',)
pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
pl.xlim(-pad, w+pad)
示例14: graph
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import text [as 別名]
def graph(text,text2=''):
pl.xticks(())
pl.yticks(())
pl.xlim(0,30)
pl.ylim(0,20)
pl.plot([x,x],[0,3])
pl.text(x,-2,"X");
pl.text(0,x,"X")
pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5)
pl.text(-5,10,text2,size=25)