本文整理匯總了Python中pylab.subplots方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.subplots方法的具體用法?Python pylab.subplots怎麽用?Python pylab.subplots使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.subplots方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def __init__(self, project):
self._ref_path = project.path
self.project = project.copy()
self.project._inspect_mode = True
self.parent = None
self.name = None
self.fig, self.ax = None, None
self.w_group = None
self.w_node = None
self.w_file = None
self.w_text = None
self.w_tab = None
self.w_path = None
self.w_type = None
# self.fig, self.ax = plt.subplots()
self.create_widgets()
self.connect_widgets()
self.display()
示例2: plot_dos
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_dos(self, ax=None, *args, **qwargs):
"""
Args:
*args:
ax:
**qwargs:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.plot(self["output/dos_energies"], self["output/dos_total"], *args, **qwargs)
ax.set_xlabel("Frequency [THz]")
ax.set_ylabel("DOS")
ax.set_title("Phonon DOS vs Energy")
return ax
示例3: plot_contourf
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_contourf(self, ax=None, show_min_erg_path=False):
"""
Args:
ax:
show_min_erg_path:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
x, y = self.meshgrid()
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.contourf(x, y, self.energies)
if show_min_erg_path:
plt.plot(self.get_minimum_energy_path(), self.temperatures, "w--")
plt.xlabel("Volume [$\AA^3$]")
plt.ylabel("Temperature [K]")
return ax
示例4: plot_min_energy_path
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_min_energy_path(self, *args, ax=None, **qwargs):
"""
Args:
*args:
ax:
**qwargs:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.xlabel("Volume [$\AA^3$]")
ax.ylabel("Temperature [K]")
ax.plot(self.get_minimum_energy_path(), self.temperatures, *args, **qwargs)
return ax
示例5: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot(self):
""" Plot the layer data (for debugging)
:return: The current figure
"""
import pylab as pl
aspect = self.nrows / float(self.ncols)
figure_width = 6 #inches
rows = max(1, int(np.sqrt(self.nlayers)))
cols = int(np.ceil(self.nlayers/rows))
# noinspection PyUnresolvedReferences
pallette = {i:rgb for (i, rgb) in enumerate(pl.cm.jet(np.linspace(0, 1, 4), bytes=True))}
f, a = pl.subplots(rows, cols)
f.set_size_inches(6 * cols, 6 * rows)
a = a.flatten()
for i, label in enumerate(self.label_names):
pl.sca(a[i])
pl.title(label)
pl.imshow(self.color_data)
pl.imshow(colorize(self.label_data[:, :, i], pallette), alpha=0.5)
# axis('off')
return f
示例6: plot_fractions
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_fractions(df, label=None):
"""Process results of multiple mappings to get fractions
of each annotations mapped
label: plot this sample only"""
fig,ax = plt.subplots(figsize=(8,8))
df = df.set_index('label')
df = df._get_numeric_data()
if len(df) == 1:
label = df.index[0]
if label != None:
ax = df.T.plot(y=label,kind='pie',colormap='Spectral',autopct='%.1f%%',
startangle=0, labels=None,legend=True,pctdistance=1.1,
fontsize=10, ax=ax)
else:
ax = df.plot(kind='barh',stacked=True,linewidth=0,cmap='Spectral',ax=ax)
#ax.legend(ncol=2)
ax.set_position([0.2,0.1,0.6,0.8])
ax.legend(loc="best",bbox_to_anchor=(1.0, .9))
plt.title('fractions mapped')
#plt.tight_layout()
return fig
示例7: plot_read_count_dists
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_read_count_dists(counts, h=8, n=50):
"""Boxplots of read count distributions """
scols,ncols = base.get_column_names(counts)
df = counts.sort_values(by='mean_norm',ascending=False)[:n]
df = df.set_index('name')[ncols]
t = df.T
w = int(h*(len(df)/60.0))+4
fig, ax = plt.subplots(figsize=(w,h))
if len(scols) > 1:
sns.stripplot(data=t,linewidth=1.0,palette='coolwarm_r')
ax.xaxis.grid(True)
else:
df.plot(kind='bar',ax=ax)
sns.despine(offset=10,trim=True)
ax.set_yscale('log')
plt.setp(ax.xaxis.get_majorticklabels(), rotation=90)
plt.ylabel('read count')
#print (df.index)
#plt.tight_layout()
fig.subplots_adjust(bottom=0.2,top=0.9)
return fig
示例8: plot_pca
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_pca(pX, palette='Spectral', labels=None, ax=None, colors=None):
"""Plot PCA result, input should be a dataframe"""
if ax==None:
fig,ax=plt.subplots(1,1,figsize=(6,6))
cats = pX.index.unique()
colors = sns.mpl_palette(palette, len(cats)+1)
print (len(cats), len(colors))
for c, i in zip(colors, cats):
#print (i, len(pX.ix[i]))
#if not i in pX.index: continue
ax.scatter(pX.ix[i, 0], pX.ix[i, 1], color=c, s=90, label=i,
lw=.8, edgecolor='black', alpha=0.8)
ax.set_xlabel('PC1')
ax.set_ylabel('PC2')
i=0
if labels is not None:
for n, point in pX.iterrows():
l=labels[i]
ax.text(point[0]+.1, point[1]+.1, str(l),fontsize=(9))
i+=1
ax.legend(fontsize=10,bbox_to_anchor=(1.5, 1.05))
sns.despine()
plt.tight_layout()
return
示例9: contour_mult_mo
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def contour_mult_mo(self,x,y,mo,xlabel='x',ylabel='y',title='',r0=0):
'''Uses matplotlib to show slices of a molecular orbitals.'''
import matplotlib.pyplot as plt
# Plot slices
f, pics = \
plt.subplots(len(mo),1,sharex=True,sharey=True,figsize=(6,2+4*len(mo)))
plt.suptitle(title)
vmax = numpy.max(numpy.abs(mo))
for i,pic in enumerate(pics):
pic.contour(y,x,mo[i],50,linewidths=0.5,colors='k')
pic.contourf(\
y,x,mo[i],50,cmap=plt.cm.rainbow,vmax=vmax,vmin=-vmax)
pic.set_ylabel(xlabel)
pic.set_xlabel(ylabel)
pic.set_title('Data Point %d' % (r0+i))
f.subplots_adjust(left=0.15,bottom=0.05,top=0.95,right=0.95)
f.show()
return f,pics
示例10: plot_dense_stats
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_dense_stats(self):
"""
Plot dense layers weight statistics
:return: A plot
:History: 2018-May-12 - Written - Henry Leung (University of Toronto)
"""
self.has_model_check()
dense_list = []
for counter, layer in enumerate(self.keras_model.layers):
if isinstance(layer, tfk.layers.Dense):
dense_list.append(counter)
denses = np.array(self.keras_model.layers)[dense_list]
fig, ax = plt.subplots(1, figsize=(15, 10), dpi=100)
for counter, dense in enumerate(denses):
weight_temp = np.array(dense.get_weights())[0].flatten()
ax.hist(weight_temp, 200, density=True, range=(-2., 2.), alpha=0.7,
label=f'Dense Layer {counter}, max: {weight_temp.max():.{2}f}, min: {weight_temp.min():.{2}f}, '
f'mean: {weight_temp.mean():.{2}f}, std: {weight_temp.std():.{2}f}')
fig.suptitle(f'Dense Layers Weight Statistics of {self.folder_name}', fontsize=17)
ax.set_xlabel('Weights', fontsize=17)
ax.set_ylabel('Normalized Distribution', fontsize=17)
ax.minorticks_on()
ax.tick_params(labelsize=15, width=3, length=10, which='major')
ax.tick_params(width=1.5, length=5, which='minor')
ax.legend(loc='best', fontsize=15)
fig.tight_layout(rect=[0, 0.00, 1, 0.96])
fig.show()
return fig
示例11: plot_array
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_array(self, val):
"""
Args:
val:
Returns:
"""
try:
import pylab as plt
except ImportError:
import matplotlib.pyplot as plt
plt.ioff()
if self.fig is None:
self.fig, self.ax = plt.subplots()
else:
self.ax.clear()
# self.ax.set_title(self.name)
if val.ndim == 1:
self.ax.plot(val)
elif val.ndim == 2:
if len(val) == 1:
self.ax.plot(val[0])
else:
self.ax.plot(val)
elif val.ndim == 3:
self.ax.plot(val[:, :, 0])
# self.fig.canvas.draw()
self.w_text.value = self.plot_to_html()
plt.close()
示例12: plot_read_lengths
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_read_lengths(filename, df=None):
"""View read length distributions"""
df = utils.fastq_to_dataframe(filename, size=5e5)
x = analysis.read_length_dist(df)
fig,ax=plt.subplots(1,1,figsize=(10,4))
ax.bar(x[1][:-1],x[0], align='center')
return fig
示例13: plot_sample_variation
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_sample_variation(df):
fig,axs=plt.subplots(2,1,figsize=(6,6))
axs=axs.flat
cols,ncols = mirdeep2.get_column_names(m)
x = m.ix[2][cols]
x.plot(kind='bar',ax=axs[0])
x2 = m.ix[2][ncols]
x2.plot(kind='bar',ax=axs[1])
sns.despine(trim=True,offset=10)
plt.tight_layout()
return fig
示例14: plot_by_label
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_by_label(X, palette='Set1'):
"""Color scatter plot by dataframe index label"""
import seaborn as sns
cats = X.index.unique()
colors = sns.mpl_palette(palette, len(cats))
#sns.palplot(colors)
f,ax = plt.subplots(figsize=(6,6))
for c, i in zip(colors, cats):
#print X.ix[i,0]
ax.scatter(X.ix[i, 0], X.ix[i, 1], color=c, s=100, label=i,
lw=1, edgecolor='black')
ax.legend(fontsize=10)
sns.despine()
return
示例15: plot_results
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import subplots [as 別名]
def plot_results(k):
fig,ax=plt.subplots(figsize=(8,6))
ax.set_title('sRNAbench top 10')
k.set_index('name')['read count'][:10].plot(kind='barh',colormap='Set2',ax=ax,log=True)
plt.tight_layout()
fig.savefig('srnabench_summary_known.png')
return