本文整理匯總了Python中pylab.scatter方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.scatter方法的具體用法?Python pylab.scatter怎麽用?Python pylab.scatter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.scatter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_lines_dists
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def test_lines_dists():
import pylab
ax = pylab.gca()
xs, ys = (0,30), (20,150)
pylab.plot(xs, ys)
points = list(zip(xs, ys))
p0, p1 = points
xs, ys = (0,0,20,30), (100,150,30,200)
pylab.scatter(xs, ys)
dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
for x, y, d in zip(xs, ys, dist):
c = Circle((x, y), d, fill=0)
ax.add_patch(c)
pylab.xlim(-200, 200)
pylab.ylim(-200, 200)
pylab.show()
示例2: test_proj
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def test_proj():
import pylab
M = test_proj_make_M()
ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
[0,0,0,0,0, 1,1,1,1,1]
xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
#
test_proj_draw_axes(M, s=400)
txs, tys, tzs = proj_transform(xs, ys, zs, M)
ixs, iys, izs = inv_transform(txs, tys, tzs, M)
pylab.scatter(txs, tys, c=tzs)
pylab.plot(txs, tys, c='r')
for x, y, t in zip(txs, tys, ts):
pylab.text(x, y, t)
pylab.xlim(-0.2, 0.2)
pylab.ylim(-0.2, 0.2)
pylab.show()
示例3: test_lines_dists
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def test_lines_dists():
import pylab
ax = pylab.gca()
xs, ys = (0,30), (20,150)
pylab.plot(xs, ys)
points = zip(xs, ys)
p0, p1 = points
xs, ys = (0,0,20,30), (100,150,30,200)
pylab.scatter(xs, ys)
dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
for x, y, d in zip(xs, ys, dist):
c = Circle((x, y), d, fill=0)
ax.add_patch(c)
pylab.xlim(-200, 200)
pylab.ylim(-200, 200)
pylab.show()
示例4: polyfitting
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def polyfitting():
'''
helper function to play around with polyfit from:
http://www.wired.com/2011/01/linear-regression-with-pylab/
'''
x = [0.2, 1.3, 2.1, 2.9, 3.3]
y = [3.3, 3.9, 4.8, 5.5, 6.9]
slope, intercept = pylab.polyfit(x, y, 1)
print 'slope:', slope, 'intercept:', intercept
yp = pylab.polyval([slope, intercept], x)
pylab.plot(x, yp)
pylab.scatter(x, y)
pylab.show()
#polyfitting()
示例5: plot_question7
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot_question7():
'''
graph of total resources generated as a function of time,
for upgrade_cost_increment == 1
'''
data = resources_vs_time(1.0, 50)
time = [item[0] for item in data]
resource = [item[1] for item in data]
a, b, c = pylab.polyfit(time, resource, 2)
print 'polyfit with argument \'2\' fits the data, thus the degree of the polynomial is 2 (quadratic)'
# plot in pylab on logarithmic scale (total resources over time for upgrade growth 0.0)
#pylab.loglog(time, resource, 'o')
# plot fitting function
yp = pylab.polyval([a, b, c], time)
pylab.plot(time, yp)
pylab.scatter(time, resource)
pylab.title('Silly Homework, Question 7')
pylab.legend(('Resources for increment 1', 'Fitting function' + ', slope: ' + str(a)))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.grid()
pylab.show()
示例6: plot_iris_knn
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot_iris_knn():
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
knn.fit(X, y)
x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1
y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
np.linspace(y_min, y_max, 100))
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure()
pl.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
pl.xlabel('sepal length (cm)')
pl.ylabel('sepal width (cm)')
pl.axis('tight')
示例7: __init__
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def __init__(self, table, lens='mds', metric='correlation', precomputed=False, **kwargs):
"""
Initializes the class by providing the mapper input table generated by Preprocess.save(). The parameter 'metric'
specifies the metric distance to be used ('correlation', 'euclidean' or 'neighbor'). The parameter 'lens'
specifies the dimensional reduction algorithm to be used ('mds' or 'pca'). The rest of the arguments are
passed directly to sklearn.manifold.MDS or sklearn.decomposition.PCA. It plots the low-dimensional projection
of the data.
"""
self.df = pandas.read_table(table + '.mapper.tsv')
if lens == 'neighbor':
self.lens_data_mds = sakmapper.apply_lens(self.df, lens=lens, **kwargs)
elif lens == 'mds':
if precomputed:
self.lens_data_mds = sakmapper.apply_lens(self.df, lens=lens, metric=metric,
dissimilarity='precomputed', **kwargs)
else:
self.lens_data_mds = sakmapper.apply_lens(self.df, lens=lens, metric=metric, **kwargs)
else:
self.lens_data_mds = sakmapper.apply_lens(self.df, lens=lens, **kwargs)
pylab.figure()
pylab.scatter(numpy.array(self.lens_data_mds)[:, 0], numpy.array(self.lens_data_mds)[:, 1], s=10, alpha=0.7)
pylab.show()
示例8: plot_CDR_correlation
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot_CDR_correlation(self, doplot=True):
"""
Displays correlation between sampling time points and CDR. It returns the two
parameters of the linear fit, Pearson's r, p-value and standard error. If optional argument 'doplot' is
False, the plot is not displayed.
"""
pel2, tol = self.get_gene(self.rootlane, ignore_log=True)
pel = numpy.array([pel2[m] for m in self.pl])*tol
dr2 = self.get_gene('_CDR')[0]
dr = numpy.array([dr2[m] for m in self.pl])
po = scipy.stats.linregress(pel, dr)
if doplot:
pylab.scatter(pel, dr, s=9.0, alpha=0.7, c='r')
pylab.xlim(min(pel), max(pel))
pylab.ylim(0, max(dr)*1.1)
pylab.xlabel(self.rootlane)
pylab.ylabel('CDR')
xk = pylab.linspace(min(pel), max(pel), 50)
pylab.plot(xk, po[1]+po[0]*xk, 'k--', linewidth=2.0)
pylab.show()
return po
示例9: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot(t, plots, shot_ind):
n = len(plots)
for i in range(0,n):
label, data = plots[i]
plt = py.subplot(n, 1, i+1)
plt.tick_params(labelsize=8)
py.grid()
py.xlim([t[0], t[-1]])
py.ylabel(label)
py.plot(t, data, 'k-')
py.scatter(t[shot_ind], data[shot_ind], marker='*', c='g')
py.xlabel("Time")
py.show()
py.close()
示例10: coinc_timeseries_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def coinc_timeseries_plot(coinc_file, start, end):
fig = pylab.figure()
f = h5py.File(coinc_file, 'r')
stat1 = f['foreground/stat1']
stat2 = f['foreground/stat2']
time1 = f['foreground/time1']
time2 = f['foreground/time2']
ifo1 = f.attrs['detector_1']
ifo2 = f.attrs['detector_2']
pylab.scatter(time1, stat1, label=ifo1, color=ifo_color[ifo1])
pylab.scatter(time2, stat2, label=ifo2, color=ifo_color[ifo2])
fmt = '.12g'
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt=fmt))
pylab.legend()
pylab.xlabel('Time (s)')
pylab.ylabel('NewSNR')
pylab.grid()
return mpld3.fig_to_html(fig)
示例11: trigger_timeseries_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def trigger_timeseries_plot(file_list, ifos, start, end):
fig = pylab.figure()
for ifo in ifos:
trigs = columns_from_file_list(file_list,
['snr', 'end_time'],
ifo, start, end)
print(trigs)
pylab.scatter(trigs['end_time'], trigs['snr'], label=ifo,
color=ifo_color[ifo])
fmt = '.12g'
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt=fmt))
pylab.legend()
pylab.xlabel('Time (s)')
pylab.ylabel('SNR')
pylab.grid()
return mpld3.fig_to_html(fig)
示例12: plot_facade_cuts
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot_facade_cuts(self):
facade_sig = self.facade_edge_scores.sum(0)
facade_cuts = find_facade_cuts(facade_sig, dilation_amount=self.facade_merge_amount)
mu = np.mean(facade_sig)
sigma = np.std(facade_sig)
w = self.rectified.shape[1]
pad=10
gs1 = pl.GridSpec(5, 5)
gs1.update(wspace=0.5, hspace=0.0) # set the spacing between axes.
pl.subplot(gs1[:3, :])
pl.imshow(self.rectified)
pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
pl.axis('off')
pl.xlim(-pad, w+pad)
pl.subplot(gs1[3:, :], sharex=pl.gca())
pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
pl.fill_between(np.arange(w), 0, np.clip(facade_sig, 0, mu+sigma), color='blue')
pl.plot(np.arange(w), facade_sig, color='blue')
pl.vlines(facade_cuts, facade_sig[facade_cuts], pl.xlim()[1], lw=2, color='black')
pl.scatter(facade_cuts, facade_sig[facade_cuts])
pl.axis('off')
pl.hlines(mu, 0, w, linestyle='dashed', color='black')
pl.text(0, mu, '$\mu$ ', ha='right')
pl.hlines(mu + sigma, 0, w, linestyle='dashed', color='gray',)
pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
pl.xlim(-pad, w+pad)
示例13: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot(Y, labels):
pylab.scatter(Y[:, 0], Y[:, 1], s=30, c=labels, cmap=colors, linewidth=0)
pylab.show()
示例14: plot_polynomial_regression
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def plot_polynomial_regression():
rng = np.random.RandomState(0)
x = 2*rng.rand(100) - 1
f = lambda t: 1.2 * t**2 + .1 * t**3 - .4 * t **5 - .5 * t ** 9
y = f(x) + .4 * rng.normal(size=100)
x_test = np.linspace(-1, 1, 100)
pl.figure()
pl.scatter(x, y, s=4)
X = np.array([x**i for i in range(5)]).T
X_test = np.array([x_test**i for i in range(5)]).T
regr = linear_model.LinearRegression()
regr.fit(X, y)
pl.plot(x_test, regr.predict(X_test), label='4th order')
X = np.array([x**i for i in range(10)]).T
X_test = np.array([x_test**i for i in range(10)]).T
regr = linear_model.LinearRegression()
regr.fit(X, y)
pl.plot(x_test, regr.predict(X_test), label='9th order')
pl.legend(loc='best')
pl.axis('tight')
pl.title('Fitting a 4th and a 9th order polynomial')
pl.figure()
pl.scatter(x, y, s=4)
pl.plot(x_test, f(x_test), label="truth")
pl.axis('tight')
pl.title('Ground truth (9th order polynomial)')
示例15: test_kmeans
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import scatter [as 別名]
def test_kmeans(K=5):
"""Test k-means with the synthetic data."""
X = XMeans.generate_2d_data(K=4)
wX = vq.whiten(X)
dic, dist = vq.kmeans(wX, K, iter=100)
plt.scatter(wX[:, 0], wX[:, 1])
plt.scatter(dic[:, 0], dic[:, 1], color="m")
plt.show()