本文整理匯總了Python中pylab.plt.axis方法的典型用法代碼示例。如果您正苦於以下問題:Python plt.axis方法的具體用法?Python plt.axis怎麽用?Python plt.axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab.plt
的用法示例。
在下文中一共展示了plt.axis方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_melmat_from_range
# 需要導入模塊: from pylab import plt [as 別名]
# 或者: from pylab.plt import axis [as 別名]
def compute_melmat_from_range(lower_edges_hz, upper_edges_hz, num_fft_bands=513, sample_rate=16000):
melmat = zeros((len(lower_edges_hz), num_fft_bands))
freqs = linspace(0.0, sample_rate / 2.0, num_fft_bands)
center_frequencies_hz = mean([lower_edges_hz,upper_edges_hz], axis = 0)
for imelband, (lower, center, upper) in enumerate(zip(lower_edges_hz, center_frequencies_hz, upper_edges_hz)):
left_slope = (freqs >= lower) == (freqs <= center)
melmat[imelband, left_slope] = (
(freqs[left_slope] - lower) / (center - lower)
)
right_slope = (freqs >= center) == (freqs <= upper)
melmat[imelband, right_slope] = (
(upper - freqs[right_slope]) / (upper - center)
)
return (melmat, center_frequencies_hz, freqs)
示例2: plot_fit
# 需要導入模塊: from pylab import plt [as 別名]
# 或者: from pylab.plt import axis [as 別名]
def plot_fit(self, size=None, tol=0.1, axis_on=True):
n, d = self.D.shape
if size:
nrows, ncols = size
else:
sq = np.ceil(np.sqrt(n))
nrows = int(sq)
ncols = int(sq)
ymin = np.nanmin(self.D)
ymax = np.nanmax(self.D)
print('ymin: {0}, ymax: {1}'.format(ymin, ymax))
numplots = np.min([n, nrows * ncols])
plt.figure()
for n in range(numplots):
plt.subplot(nrows, ncols, n + 1)
plt.ylim((ymin - tol, ymax + tol))
plt.plot(self.L[n, :] + self.S[n, :], 'r')
plt.plot(self.L[n, :], 'b')
if not axis_on:
plt.axis('off')
示例3: update
# 需要導入模塊: from pylab import plt [as 別名]
# 或者: from pylab.plt import axis [as 別名]
def update(self, audio_samples):
""" Return processed audio data
Returns mel curve, x/y data
This is called every time there is a microphone update
Returns
-------
audio_data : dict
Dict containinng "mel", "vol", "x", and "y"
"""
min_frequency = self._config["audio_config"]["MIN_FREQUENCY"]
max_frequency = self._config["audio_config"]["MAX_FREQUENCY"]
audio_data = {}
# Normalize samples between 0 and 1
y = audio_samples / 2.0**15
# Construct a rolling window of audio samples
self.y_roll[:-1] = self.y_roll[1:]
self.y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(self.y_roll, axis=0).astype(np.float32)
vol = np.max(np.abs(y_data))
# Transform audio input into the frequency domain
N = len(y_data)
N_zeros = 2**int(np.ceil(np.log2(N))) - N
# Pad with zeros until the next power of two
y_data *= self.fft_window
y_padded = np.pad(y_data, (0, N_zeros), mode='constant')
YS = np.abs(np.fft.rfft(y_padded)[:N // 2])
# Construct a Mel filterbank from the FFT data
mel = np.atleast_2d(YS).T * self.mel_y.T
# Scale data to values more suitable for visualization
mel = np.sum(mel, axis=0)
mel = mel**2.0
# Gain normalization
self.mel_gain.update(np.max(gaussian_filter1d(mel, sigma=1.0)))
mel /= self.mel_gain.value
mel = self.mel_smoothing.update(mel)
x = np.linspace(min_frequency, max_frequency, len(mel))
y = self.fft_plot_filter.update(mel)
audio_data["mel"] = mel
audio_data["vol"] = vol
audio_data["x"] = x
audio_data["y"] = y
return audio_data