當前位置: 首頁>>代碼示例>>Python>>正文


Python pylab.mean方法代碼示例

本文整理匯總了Python中pylab.mean方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.mean方法的具體用法?Python pylab.mean怎麽用?Python pylab.mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylab的用法示例。


在下文中一共展示了pylab.mean方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def __init__(self, data=None, X=None, Y=None, bins=None):
        """.. rubric:: **Constructor**

        One should provide either the parameter **data** alone, or the X and Y
        parameters, which are the histogram of some data sample.

        :param data: random data
        :param X: evenly spaced X data
        :param Y: probability density of the data
        :param bins: if data is providede, we will compute the probability using
            hist function and bins may be provided. 

        """

        self.data = data
        if data:
            Y, X, _ = pylab.hist(self.data, bins=bins, density=True)
            self.N = len(X) - 1
            self.X = [(X[i]+X[i+1])/2 for i in range(self.N)]
            self.Y = Y
            self.A = 1
            self.guess_std = pylab.std(self.data)
            self.guess_mean = pylab.mean(self.data)
            self.guess_amp = 1
        else:
            self.X = X
            self.Y = Y
            self.Y = self.Y / sum(self.Y)
            if len(self.X) == len(self.Y) + 1 :
                self.X = [(X[i]+X[i+1])/2 for i in range(len(X)-1)]

            self.N = len(self.X)
            self.guess_mean = self.X[int(self.N/2)]
            self.guess_std = sqrt(sum((self.X - mean(self.X))**2)/self.N)/(sqrt(2*3.14))
            self.guess_amp = 1.

        self.func = self._func_normal 
開發者ID:cokelaer,項目名稱:fitter,代碼行數:39,代碼來源:histfit.py

示例2: nrms

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def nrms(data_fit, data_true):
    """
    Normalized root mean square error.
    """
    # root mean square error
    rms = pl.mean(np.linalg.norm(data_fit - data_true, axis=0))

    # normalization factor is the max - min magnitude, or 2 times max dist from mean
    norm_factor = 2 * \
        np.linalg.norm(data_true - pl.mean(data_true, axis=1), axis=0).max()
    return (norm_factor - rms)/norm_factor 
開發者ID:jgoppert,項目名稱:sysid,代碼行數:13,代碼來源:subspace.py

示例3: estimate_skew_angle

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def estimate_skew_angle(self, image, angles):
        
        estimates = []
        
        for a in angles:
            v = mean(interpolation.rotate(
                image, a, order=0, mode='constant'), axis=1)
            v = var(v)
            estimates.append((v, a))
        if self.parameter['debug'] > 0:
            plot([y for x, y in estimates], [x for x, y in estimates])
            ginput(1, self.parameter['debug'])
        _, a = max(estimates)
        return a 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:16,代碼來源:ocrd_anybaseocr_deskew.py

示例4: check_page

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def check_page(self, image):
        if len(image.shape) == 3:
            return "input image is color image %s" % (image.shape,)
        if mean(image) < median(image):
            return "image may be inverted"
        h, w = image.shape
        if h < 600:
            return "image not tall enough for a page image %s" % (image.shape,)
        if h > 10000:
            return "image too tall for a page image %s" % (image.shape,)
        if w < 600:
            return "image too narrow for a page image %s" % (image.shape,)
        if w > 10000:
            return "line too wide for a page image %s" % (image.shape,)
        return None 
開發者ID:OCR-D,項目名稱:ocrd_anybaseocr,代碼行數:17,代碼來源:ocrd_anybaseocr_binarize.py

示例5: fit

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def fit(self, error_rate=0.05, semilogy=False, Nfit=100,
            error_kwargs={"lw":1, "color":"black", "alpha":0.2},
            fit_kwargs={"lw":2, "color":"red"}):
        self.mus = []
        self.sigmas = []
        self.amplitudes = []
        self.fits = []

        pylab.figure(1)
        pylab.clf()
        pylab.bar(self.X, self.Y, width=0.85, ec="k")

        for x in range(Nfit):
            # 10% error on the data to add errors 
            self.E = [scipy.stats.norm.rvs(0, error_rate) for y in self.Y]
            #[scipy.stats.norm.rvs(0, self.std_data * error_rate) for x in range(self.N)]
            self.result = scipy.optimize.least_squares(self.func, 
                (self.guess_mean, self.guess_std, self.guess_amp))

            mu, sigma, amplitude = self.result['x']
            pylab.plot(self.X, amplitude * scipy.stats.norm.pdf(self.X, mu,sigma),
                **error_kwargs)
            self.sigmas.append(sigma)
            self.amplitudes.append(amplitude)
            self.mus.append(mu)


            self.fits.append(amplitude * scipy.stats.norm.pdf(self.X, mu,sigma))

        self.sigma = mean(self.sigmas)
        self.amplitude = mean(self.amplitudes)
        self.mu = mean(self.mus)


        pylab.plot(self.X, self.amplitude * scipy.stats.norm.pdf(self.X, self.mu, self.sigma), 
                   **fit_kwargs)
        if semilogy:
            pylab.semilogy() 
        pylab.grid()

        pylab.figure(2)
        pylab.clf()
        #pylab.bar(self.X, self.Y, width=0.85, ec="k", alpha=0.5)
        M = mean(self.fits, axis=0)
        S = pylab.std(self.fits, axis=0)
        pylab.fill_between(self.X, M-3*S, M+3*S, color="gray", alpha=0.5)
        pylab.fill_between(self.X, M-2*S, M+2*S, color="gray", alpha=0.5)
        pylab.fill_between(self.X, M-S, M+S, color="gray", alpha=0.5)
        #pylab.plot(self.X, M-S, color="k")
        #pylab.plot(self.X, M+S, color="k")
        pylab.plot(self.X, self.amplitude * scipy.stats.norm.pdf(self.X, self.mu, self.sigma), 
                   **fit_kwargs)
        pylab.grid()

        return self.mu, self.sigma, self.amplitude 
開發者ID:cokelaer,項目名稱:fitter,代碼行數:57,代碼來源:histfit.py

示例6: plot_pcs

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def plot_pcs(self, m, U, mu, k, S):
    """plot_pcs(m, U, mu, k, S)
    Plot the principal components in U, after DEMUD iteration m, 
        by adding back in the mean in mu.
    Ensure that there are k of them, 
        and list the corresponding singular values from S.
    """

    #assert (k == U.shape[1])
  
    colors = ['b','g','r','c','m','y','k','#666666','DarkGreen', 'Orange']
    while len(colors) < k: colors.extend(colors)
  
    pylab.clf()

    if m == 0:
      max_num_pcs = k
    else:
      cur_pcs = U.shape[1]
      max_num_pcs = min(min(cur_pcs,k), 4)
  
    umu = numpy.zeros_like(U)
    for i in range(max_num_pcs):
      umu[:,i] = U[:,i] + mu[:,0] #[i]
      
    for i in range(max_num_pcs):
      vector = umu[:,i]
      if i == 0 and m == 1:
        vector[0] -= 1
      label = 'PC %d, SV %.2e' % (i, S[i])
      pylab.plot(self.xvals, vector, color=colors[i], label=label)
      
    pylab.xlabel(self.xlabel)
    pylab.ylabel(self.ylabel)
    pylab.title('SVD of dataset ' + self.name + ' after selection ' + str(m))
    xvals = [self.xvals[z] for z in range(self.xvals.shape[0])]
    diff = pylab.mean([xvals[i] - xvals[i-1] for i in range(1, len(xvals))])
    pylab.xlim([float(xvals[0]) - diff / 6.0, float(xvals[-1]) + diff / 6.0])
    #pylab.xticks(xvals, self.features)
    pylab.legend()
    
    outdir = os.path.join('results', self.name)
    if not os.path.exists(outdir):
      os.mkdir(outdir)
    figfile = os.path.join(outdir, 'PCs-sel-%d-k-%d-(%s).pdf' % (m, k, label))
    pylab.savefig(figfile)
    print 'Wrote SVD to %s' % figfile
    pylab.close()


  # Write a list of the selections in CSV format 
開發者ID:wkiri,項目名稱:DEMUD,代碼行數:53,代碼來源:dataset.py


注:本文中的pylab.mean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。