本文整理匯總了Python中pylab.mean方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.mean方法的具體用法?Python pylab.mean怎麽用?Python pylab.mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.mean方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def __init__(self, data=None, X=None, Y=None, bins=None):
""".. rubric:: **Constructor**
One should provide either the parameter **data** alone, or the X and Y
parameters, which are the histogram of some data sample.
:param data: random data
:param X: evenly spaced X data
:param Y: probability density of the data
:param bins: if data is providede, we will compute the probability using
hist function and bins may be provided.
"""
self.data = data
if data:
Y, X, _ = pylab.hist(self.data, bins=bins, density=True)
self.N = len(X) - 1
self.X = [(X[i]+X[i+1])/2 for i in range(self.N)]
self.Y = Y
self.A = 1
self.guess_std = pylab.std(self.data)
self.guess_mean = pylab.mean(self.data)
self.guess_amp = 1
else:
self.X = X
self.Y = Y
self.Y = self.Y / sum(self.Y)
if len(self.X) == len(self.Y) + 1 :
self.X = [(X[i]+X[i+1])/2 for i in range(len(X)-1)]
self.N = len(self.X)
self.guess_mean = self.X[int(self.N/2)]
self.guess_std = sqrt(sum((self.X - mean(self.X))**2)/self.N)/(sqrt(2*3.14))
self.guess_amp = 1.
self.func = self._func_normal
示例2: nrms
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def nrms(data_fit, data_true):
"""
Normalized root mean square error.
"""
# root mean square error
rms = pl.mean(np.linalg.norm(data_fit - data_true, axis=0))
# normalization factor is the max - min magnitude, or 2 times max dist from mean
norm_factor = 2 * \
np.linalg.norm(data_true - pl.mean(data_true, axis=1), axis=0).max()
return (norm_factor - rms)/norm_factor
示例3: estimate_skew_angle
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def estimate_skew_angle(self, image, angles):
estimates = []
for a in angles:
v = mean(interpolation.rotate(
image, a, order=0, mode='constant'), axis=1)
v = var(v)
estimates.append((v, a))
if self.parameter['debug'] > 0:
plot([y for x, y in estimates], [x for x, y in estimates])
ginput(1, self.parameter['debug'])
_, a = max(estimates)
return a
示例4: check_page
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def check_page(self, image):
if len(image.shape) == 3:
return "input image is color image %s" % (image.shape,)
if mean(image) < median(image):
return "image may be inverted"
h, w = image.shape
if h < 600:
return "image not tall enough for a page image %s" % (image.shape,)
if h > 10000:
return "image too tall for a page image %s" % (image.shape,)
if w < 600:
return "image too narrow for a page image %s" % (image.shape,)
if w > 10000:
return "line too wide for a page image %s" % (image.shape,)
return None
示例5: fit
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def fit(self, error_rate=0.05, semilogy=False, Nfit=100,
error_kwargs={"lw":1, "color":"black", "alpha":0.2},
fit_kwargs={"lw":2, "color":"red"}):
self.mus = []
self.sigmas = []
self.amplitudes = []
self.fits = []
pylab.figure(1)
pylab.clf()
pylab.bar(self.X, self.Y, width=0.85, ec="k")
for x in range(Nfit):
# 10% error on the data to add errors
self.E = [scipy.stats.norm.rvs(0, error_rate) for y in self.Y]
#[scipy.stats.norm.rvs(0, self.std_data * error_rate) for x in range(self.N)]
self.result = scipy.optimize.least_squares(self.func,
(self.guess_mean, self.guess_std, self.guess_amp))
mu, sigma, amplitude = self.result['x']
pylab.plot(self.X, amplitude * scipy.stats.norm.pdf(self.X, mu,sigma),
**error_kwargs)
self.sigmas.append(sigma)
self.amplitudes.append(amplitude)
self.mus.append(mu)
self.fits.append(amplitude * scipy.stats.norm.pdf(self.X, mu,sigma))
self.sigma = mean(self.sigmas)
self.amplitude = mean(self.amplitudes)
self.mu = mean(self.mus)
pylab.plot(self.X, self.amplitude * scipy.stats.norm.pdf(self.X, self.mu, self.sigma),
**fit_kwargs)
if semilogy:
pylab.semilogy()
pylab.grid()
pylab.figure(2)
pylab.clf()
#pylab.bar(self.X, self.Y, width=0.85, ec="k", alpha=0.5)
M = mean(self.fits, axis=0)
S = pylab.std(self.fits, axis=0)
pylab.fill_between(self.X, M-3*S, M+3*S, color="gray", alpha=0.5)
pylab.fill_between(self.X, M-2*S, M+2*S, color="gray", alpha=0.5)
pylab.fill_between(self.X, M-S, M+S, color="gray", alpha=0.5)
#pylab.plot(self.X, M-S, color="k")
#pylab.plot(self.X, M+S, color="k")
pylab.plot(self.X, self.amplitude * scipy.stats.norm.pdf(self.X, self.mu, self.sigma),
**fit_kwargs)
pylab.grid()
return self.mu, self.sigma, self.amplitude
示例6: plot_pcs
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import mean [as 別名]
def plot_pcs(self, m, U, mu, k, S):
"""plot_pcs(m, U, mu, k, S)
Plot the principal components in U, after DEMUD iteration m,
by adding back in the mean in mu.
Ensure that there are k of them,
and list the corresponding singular values from S.
"""
#assert (k == U.shape[1])
colors = ['b','g','r','c','m','y','k','#666666','DarkGreen', 'Orange']
while len(colors) < k: colors.extend(colors)
pylab.clf()
if m == 0:
max_num_pcs = k
else:
cur_pcs = U.shape[1]
max_num_pcs = min(min(cur_pcs,k), 4)
umu = numpy.zeros_like(U)
for i in range(max_num_pcs):
umu[:,i] = U[:,i] + mu[:,0] #[i]
for i in range(max_num_pcs):
vector = umu[:,i]
if i == 0 and m == 1:
vector[0] -= 1
label = 'PC %d, SV %.2e' % (i, S[i])
pylab.plot(self.xvals, vector, color=colors[i], label=label)
pylab.xlabel(self.xlabel)
pylab.ylabel(self.ylabel)
pylab.title('SVD of dataset ' + self.name + ' after selection ' + str(m))
xvals = [self.xvals[z] for z in range(self.xvals.shape[0])]
diff = pylab.mean([xvals[i] - xvals[i-1] for i in range(1, len(xvals))])
pylab.xlim([float(xvals[0]) - diff / 6.0, float(xvals[-1]) + diff / 6.0])
#pylab.xticks(xvals, self.features)
pylab.legend()
outdir = os.path.join('results', self.name)
if not os.path.exists(outdir):
os.mkdir(outdir)
figfile = os.path.join(outdir, 'PCs-sel-%d-k-%d-(%s).pdf' % (m, k, label))
pylab.savefig(figfile)
print 'Wrote SVD to %s' % figfile
pylab.close()
# Write a list of the selections in CSV format