本文整理匯總了Python中pylab.grid方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.grid方法的具體用法?Python pylab.grid怎麽用?Python pylab.grid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.grid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_roc_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_roc_curve(y_true, y_score, size=None):
"""plot_roc_curve."""
false_positive_rate, true_positive_rate, thresholds = roc_curve(
y_true, y_score)
if size is not None:
plt.figure(figsize=(size, size))
plt.axis('equal')
plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.ylim([-0.05, 1.05])
plt.xlim([-0.05, 1.05])
plt.grid()
plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
roc_auc_score(y_true, y_score)))
示例2: plot_learning_curve
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_learning_curve(train_sizes, train_scores, test_scores):
"""plot_learning_curve."""
plt.figure(figsize=(15, 5))
plt.title('Learning Curve')
plt.xlabel("Training examples")
plt.ylabel("AUC ROC")
tr_ys = compute_stats(train_scores)
te_ys = compute_stats(test_scores)
plot_stats(train_sizes, tr_ys,
label='Training score',
color='navy')
plot_stats(train_sizes, te_ys,
label='Cross-validation score',
color='orange')
plt.grid(linestyle=":")
plt.legend(loc="best")
plt.show()
示例3: plot_question7
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_question7():
'''
graph of total resources generated as a function of time,
for upgrade_cost_increment == 1
'''
data = resources_vs_time(1.0, 50)
time = [item[0] for item in data]
resource = [item[1] for item in data]
a, b, c = pylab.polyfit(time, resource, 2)
print 'polyfit with argument \'2\' fits the data, thus the degree of the polynomial is 2 (quadratic)'
# plot in pylab on logarithmic scale (total resources over time for upgrade growth 0.0)
#pylab.loglog(time, resource, 'o')
# plot fitting function
yp = pylab.polyval([a, b, c], time)
pylab.plot(time, yp)
pylab.scatter(time, resource)
pylab.title('Silly Homework, Question 7')
pylab.legend(('Resources for increment 1', 'Fitting function' + ', slope: ' + str(a)))
pylab.xlabel('Current Time')
pylab.ylabel('Total Resources Generated')
pylab.grid()
pylab.show()
示例4: plot_rectified
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_rectified(self):
import pylab
pylab.title('rectified')
pylab.imshow(self.rectified)
for line in self.vlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例5: plot_original
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_original(self):
import pylab
pylab.title('original')
pylab.imshow(self.data)
for line in self.lines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)
for line in self.vlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
示例6: coupling_optim_garrick
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def coupling_optim_garrick(y,t):
creation=s.zeros(n_bin)
destruction=s.zeros(n_bin)
#now I try to rewrite this in a more optimized way
destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\
#the destruction of k-mers
for k in xrange(n_bin):
kyn = (kernel*f_garrick[:,:,k])*y[:,s.newaxis]*y[s.newaxis,:]
creation[k] = s.sum(kyn)
creation=0.5*creation
out=creation+destruction
return out
#Now I work with the function for espressing smoluchowski equation when a uniform grid is used
示例7: coupling_optim
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def coupling_optim(y,t):
creation=s.zeros(n_bin)
destruction=s.zeros(n_bin)
#now I try to rewrite this in a more optimized way
destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\
#the destruction of k-mers
kyn = kernel*y[:,s.newaxis]*y[s.newaxis,:]
for k in xrange(n_bin):
creation[k] = s.sum(kyn[s.arange(k),k-s.arange(k)-1])
creation=0.5*creation
out=creation+destruction
return out
#Now I go for the optimal optimization of the chi_{i,j,k} coefficients used by Garrick for
# dealing with a non-uniform grid.
示例8: plot_sensor_data
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_sensor_data(self, title, timestamp, x, y, z):
if not self.to_save and not self.to_show:
return
self.big_figure()
pylab.grid("on")
pylab.plot(timestamp, x, color='r', label='x')
pylab.plot(timestamp, y, color='g', label='y')
pylab.plot(timestamp, z, color='b', label='z')
pylab.legend()
pylab.title(title)
pylab.xlabel('Time')
pylab.ylabel('Amplitude')
示例9: plot_barchart
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot_barchart(self, data, labels, colors, xlabel, ylabel, xticks, legendloc=1):
self.big_figure()
index = np.arange(len(data[0][0]))
bar_width = 0.25
pylab.grid("on", axis='y')
pylab.ylim([0.5, 1.0])
for i in range(0, len(data)):
rects = pylab.bar(bar_width / 2 + index + (i * bar_width), data[i][0], bar_width,
alpha=0.5, color=colors[i],
yerr=data[i][1],
error_kw={'ecolor': '0.3'},
label=labels[i])
pylab.legend(loc=legendloc, prop={'size': 12})
pylab.xlabel(xlabel)
pylab.ylabel(ylabel)
pylab.xticks(bar_width / 2 + index + ((bar_width * (len(data[0]) + 1)) / len(data[0])), xticks)
示例10: _plot_example
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def _plot_example(xv, yv, b):
"""Plot for debugging purposes."""
matplotlib.rcParams['font.family'] = "serif"
matplotlib.rcParams['font.sans-serif'] = "Times"
matplotlib.rcParams["legend.edgecolor"] = "None"
matplotlib.rcParams["axes.spines.top"] = False
matplotlib.rcParams["axes.spines.bottom"] = True
matplotlib.rcParams["axes.spines.left"] = True
matplotlib.rcParams["axes.spines.right"] = False
matplotlib.rcParams['axes.grid'] = True
matplotlib.rcParams['axes.grid.axis'] = 'both'
matplotlib.rcParams['axes.grid.which'] = 'major'
matplotlib.rcParams['legend.edgecolor'] = '1.0'
plt.plot(xv[:, 113], yv[:, 113], 'ko')
plt.plot(xv[:, 113], xv[:, 113] * b[113, 1] + b[113, 0], 'nneighbors')
# plt.plot(x[113], x[113]*b[113, 1] + b[113, 0], 'ro')
plt.grid(True)
plt.xlabel('Radiance, $\mu{W }nm^{-1} sr^{-1} cm^{-2}$')
plt.ylabel('Reflectance')
plt.show(block=True)
plt.savefig('empirical_line.pdf')
示例11: summary
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def summary(self, Nbest=5, lw=2, plot=True, method="sumsquare_error"):
"""Plots the distribution of the data and Nbest distribution
"""
if plot:
pylab.clf()
self.hist()
self.plot_pdf(Nbest=Nbest, lw=lw, method=method)
pylab.grid(True)
Nbest = min(Nbest, len(self.distributions))
try:
names = self.df_errors.sort_values(
by=method).index[0:Nbest]
except:
names = self.df_errors.sort(method).index[0:Nbest]
return self.df_errors.loc[names]
示例12: drawPrfast
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def drawPrfast(tp, fp, tot, show=True, col="g"):
tp = numpy.cumsum(tp)
fp = numpy.cumsum(fp)
rec = tp / tot
prec = tp / (fp + tp)
ap = VOColdap(rec, prec)
ap1 = VOCap(rec, prec)
if show:
pylab.plot(rec, prec, '-%s' % col)
pylab.title("AP=%.1f 11pt(%.1f)" % (ap1 * 100, ap * 100))
pylab.xlabel("Recall")
pylab.ylabel("Precision")
pylab.grid()
pylab.gca().set_xlim((0, 1))
pylab.gca().set_ylim((0, 1))
pylab.show()
pylab.draw()
return rec, prec, ap1
示例13: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def plot(t, plots, shot_ind):
n = len(plots)
for i in range(0,n):
label, data = plots[i]
plt = py.subplot(n, 1, i+1)
plt.tick_params(labelsize=8)
py.grid()
py.xlim([t[0], t[-1]])
py.ylabel(label)
py.plot(t, data, 'k-')
py.scatter(t[shot_ind], data[shot_ind], marker='*', c='g')
py.xlabel("Time")
py.show()
py.close()
示例14: coinc_timeseries_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def coinc_timeseries_plot(coinc_file, start, end):
fig = pylab.figure()
f = h5py.File(coinc_file, 'r')
stat1 = f['foreground/stat1']
stat2 = f['foreground/stat2']
time1 = f['foreground/time1']
time2 = f['foreground/time2']
ifo1 = f.attrs['detector_1']
ifo2 = f.attrs['detector_2']
pylab.scatter(time1, stat1, label=ifo1, color=ifo_color[ifo1])
pylab.scatter(time2, stat2, label=ifo2, color=ifo_color[ifo2])
fmt = '.12g'
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt=fmt))
pylab.legend()
pylab.xlabel('Time (s)')
pylab.ylabel('NewSNR')
pylab.grid()
return mpld3.fig_to_html(fig)
示例15: trigger_timeseries_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import grid [as 別名]
def trigger_timeseries_plot(file_list, ifos, start, end):
fig = pylab.figure()
for ifo in ifos:
trigs = columns_from_file_list(file_list,
['snr', 'end_time'],
ifo, start, end)
print(trigs)
pylab.scatter(trigs['end_time'], trigs['snr'], label=ifo,
color=ifo_color[ifo])
fmt = '.12g'
mpld3.plugins.connect(fig, mpld3.plugins.MousePosition(fmt=fmt))
pylab.legend()
pylab.xlabel('Time (s)')
pylab.ylabel('SNR')
pylab.grid()
return mpld3.fig_to_html(fig)