當前位置: 首頁>>代碼示例>>Python>>正文


Python pylab.get_cmap方法代碼示例

本文整理匯總了Python中pylab.get_cmap方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.get_cmap方法的具體用法?Python pylab.get_cmap怎麽用?Python pylab.get_cmap使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylab的用法示例。


在下文中一共展示了pylab.get_cmap方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_set_cmap

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def create_set_cmap(values, cmap_name, alpha=255):
    """
    return a dict of colors corresponding to the unique values
    
    :param values: values to be mapped
    :param cmap_name: colormap name
    :param alpha: color alpha
    :return: dict of colors corresponding to the unique values
    """
    unique_values = list(set(values))
    shuffle(unique_values)
    from pylab import get_cmap
    cmap = get_cmap(cmap_name)
    d = {}
    for i in range(len(unique_values)):
        d[unique_values[i]] = _convert_color_format(cmap(1.*i/len(unique_values)), alpha)
    return d 
開發者ID:andrea-cuttone,項目名稱:geoplotlib,代碼行數:19,代碼來源:colors.py

示例2: draw_adjacency_graph

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def draw_adjacency_graph(adjacency_matrix,
                         node_color=None,
                         size=10,
                         layout='graphviz',
                         prog='neato',
                         node_size=80,
                         colormap='autumn'):
    """draw_adjacency_graph."""
    graph = nx.from_scipy_sparse_matrix(adjacency_matrix)

    plt.figure(figsize=(size, size))
    plt.grid(False)
    plt.axis('off')

    if layout == 'graphviz':
        pos = nx.graphviz_layout(graph, prog=prog)
    else:
        pos = nx.spring_layout(graph)

    if len(node_color) == 0:
        node_color = 'gray'
    nx.draw_networkx_nodes(graph, pos,
                           node_color=node_color,
                           alpha=0.6,
                           node_size=node_size,
                           cmap=plt.get_cmap(colormap))
    nx.draw_networkx_edges(graph, pos, alpha=0.5)
    plt.show()


# draw a whole set of graphs:: 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:33,代碼來源:__init__.py

示例3: __init__

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def __init__(self, cmap_name, alpha=255, levels=10):
        """
        Converts continuous values into colors using matplotlib colorscales
        :param cmap_name: colormap name
        :param alpha: color alpha
        :param levels: discretize the colorscale into levels
        """
        from pylab import get_cmap
        self.cmap = get_cmap(cmap_name)
        self.alpha = alpha
        self.levels = levels
        self.mapping = {} 
開發者ID:andrea-cuttone,項目名稱:geoplotlib,代碼行數:14,代碼來源:colors.py

示例4: draw_kp

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def draw_kp(kp, img, radius=None):
    """
    kp is 15 x 2 or 3 numpy.
    img can be either RGB or Gray
    Draws bird points.
    """
    if radius is None:
        radius = max(4, (np.mean(img.shape[:2]) * 0.01).astype(int))

    num_kp = kp.shape[0]
    # Generate colors
    import pylab
    cm = pylab.get_cmap('gist_rainbow')
    colors = 255 * np.array([cm(1. * i / num_kp)[:3] for i in range(num_kp)])
    white = np.ones(3) * 255

    image = img.copy()

    if isinstance(image.reshape(-1)[0], np.float32):
        # Convert to 255 and np.uint8 for cv2..
        image = (image * 255).astype(np.uint8)

    kp = np.round(kp).astype(int)

    for kpi, color in zip(kp, colors):
        # This sometimes causes OverflowError,,
        if kpi[2] == 0:
            continue
        cv2.circle(image, (kpi[0], kpi[1]), radius + 1, white, -1)
        cv2.circle(image, (kpi[0], kpi[1]), radius, color, -1)

    # import matplotlib.pyplot as plt
    # plt.ion()
    # plt.clf()
    # plt.imshow(image)
    # import ipdb; ipdb.set_trace()
    return image 
開發者ID:akanazawa,項目名稱:cmr,代碼行數:39,代碼來源:bird_vis.py

示例5: galaxy10_confusion

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def galaxy10_confusion(confusion_mat):
    """
    NAME:
        galaxy10_confusion
    PURPOSE:
        to plot confusion matrix
    INPUT:
        confusion_mat (ndarray): An integer 0-9
    OUTPUT:
        (string): Name of the class
    HISTORY:
        2018-Feb-11 - Written - Henry Leung (University of Toronto)
    """
    import pylab as plt

    conf_arr = confusion_mat.astype(int)

    norm_conf = []
    a = np.max(conf_arr)
    for i in conf_arr:
        tmp_arr = []
        for j in i:
            tmp_arr.append(float(j) / float(a))
        norm_conf.append(tmp_arr)

    fig, ax = plt.subplots(1, figsize=(10, 10.5), dpi=100)
    fig.suptitle("Confusion Matrix for Galaxy10 trained by astroNN", fontsize=18)
    ax.set_aspect(1)
    ax.imshow(np.array(norm_conf), cmap=plt.get_cmap('Blues'), interpolation='nearest')

    width, height = conf_arr.shape

    for x in range(width):
        for y in range(height):
            ax.annotate(str(conf_arr[x][y]), xy=(y, x),
                        horizontalalignment='center',
                        verticalalignment='center')

    alphabet = '0123456789'
    plt.xticks(range(width), alphabet[:width], fontsize=20)
    plt.yticks(range(height), alphabet[:height], fontsize=20)
    ax.set_ylabel('Prediction class by astroNN', fontsize=18)
    ax.set_xlabel('True class', fontsize=18)
    fig.tight_layout(rect=[0, 0.00, 0.8, 0.96])
    fig.show()

    return None 
開發者ID:henrysky,項目名稱:astroNN,代碼行數:49,代碼來源:galaxy10.py

示例6: plot_heatmap_griewank

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def plot_heatmap_griewank(results,algorithms, fig_name='heatmap_griewank.png'):
    """Example Plot as seen in the SPOTPY Documentation"""
    import matplotlib.pyplot as plt

    from matplotlib import ticker
    from matplotlib import cm
    font = {'family' : 'calibri',
        'weight' : 'normal',
        'size'   : 20}
    plt.rc('font', **font)
    subplots=len(results)
    xticks=[-40,0,40]
    yticks=[-40,0,40]
    fig=plt.figure(figsize=(16,6))
    N = 2000
    x = np.linspace(-50.0, 50.0, N)
    y = np.linspace(-50.0, 50.0, N)

    x, y = np.meshgrid(x, y)

    z=1+ (x**2+y**2)/4000 - np.cos(x/np.sqrt(2))*np.cos(y/np.sqrt(3))

    cmap = plt.get_cmap('autumn')

    rows=2.0
    for i in range(subplots):
        amount_row = int(np.ceil(subplots/rows))
        ax = plt.subplot(rows, amount_row, i+1)
        CS = ax.contourf(x, y, z,locator=ticker.LogLocator(),cmap=cm.rainbow)

        ax.plot(results[i]['par0'],results[i]['par1'],'ko',alpha=0.2,markersize=1.9)
        ax.xaxis.set_ticks([])
        if i==0:
            ax.set_ylabel('y')
        if i==subplots/rows:
            ax.set_ylabel('y')
        if i>=subplots/rows:
            ax.set_xlabel('x')
            ax.xaxis.set_ticks(xticks)

        if i!=0 and i!=subplots/rows:
            ax.yaxis.set_ticks([])


        ax.set_title(algorithms[i])

    fig.savefig(fig_name, bbox_inches='tight') 
開發者ID:thouska,項目名稱:spotpy,代碼行數:49,代碼來源:analyser.py

示例7: hierarchical_clustering

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def hierarchical_clustering(mat, method='average', cluster_distance=True, labels=None, thres=0.65):
    """
    Performs hierarchical clustering based on distance matrix 'mat' using the method specified by 'method'.
    Optional argument 'labels' may specify a list of labels. If cluster_distance is True, the clustering is
    performed on the distance matrix using euclidean distance. Otherwise, mat specifies the distance matrix for
    clustering. Adapted from
    http://stackoverflow.com/questions/7664826/how-to-get-flat-clustering-corresponding-to-color-clusters-in-the-dendrogram-cre
    Not subjected to copyright.
    """
    D = numpy.array(mat)
    if not cluster_distance:
        Dtriangle = scipy.spatial.distance.squareform(D)
    else:
        Dtriangle = scipy.spatial.distance.pdist(D, metric='euclidean')
    fig = pylab.figure(figsize=(8, 8))
    ax1 = fig.add_axes([0.09, 0.1, 0.2, 0.6])
    Y = sch.linkage(Dtriangle, method=method)
    Z1 = sch.dendrogram(Y, orientation='right', color_threshold=thres*max(Y[:, 2]))
    ax1.set_xticks([])
    ax1.set_yticks([])
    ax2 = fig.add_axes([0.3, 0.71, 0.6, 0.2])
    Y = sch.linkage(Dtriangle, method=method)
    Z2 = sch.dendrogram(Y, color_threshold=thres*max(Y[:, 2]))
    ax2.set_xticks([])
    ax2.set_yticks([])
    axmatrix = fig.add_axes([0.3, 0.1, 0.6, 0.6])
    idx1 = Z1['leaves']
    idx2 = Z2['leaves']
    D = D[idx1, :]
    D = D[:, idx2]
    im = axmatrix.matshow(D, aspect='auto', origin='lower', cmap=pylab.get_cmap('jet_r'))
    if labels is None:
        axmatrix.set_xticks([])
        axmatrix.set_yticks([])
    else:
        axmatrix.set_xticks(range(len(labels)))
        lab = [labels[idx1[m]] for m in range(len(labels))]
        axmatrix.set_xticklabels(lab)
        axmatrix.set_yticks(range(len(labels)))
        axmatrix.set_yticklabels(lab)
        for tick in pylab.gca().xaxis.iter_ticks():
            tick[0].label2On = False
            tick[0].label1On = True
            tick[0].label1.set_rotation('vertical')
        for tick in pylab.gca().yaxis.iter_ticks():
            tick[0].label2On = True
            tick[0].label1On = False
    axcolor = fig.add_axes([0.91, 0.1, 0.02, 0.6])
    pylab.colorbar(im, cax=axcolor)
    pylab.show()
    return Z1 
開發者ID:CamaraLab,項目名稱:scTDA,代碼行數:53,代碼來源:main.py

示例8: plot_rels

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8):
    ns, n = data.shape
    if labels is None:
        labels = list(map(str, range(n)))
    ncol = 5
    # ncol = 4
    nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))
    #nrow=1
    #pylab.rcParams.update({'figure.autolayout': True})
    fig, axs = pylab.subplots(nrow, ncol)
    fig.set_size_inches(5 * ncol, 5 * nrow)
    #fig.set_canvas(pylab.gcf().canvas)
    pairs = list(combinations(range(n), 2))  #[:4]
    pairs = sorted(pairs, key=lambda q: q[0]**2+q[1]**2)  # Puts stronger relationships first
    if colors is not None:
        colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)).clip(1e-7)

    for ax, pair in zip(axs.flat, pairs):
        if latent is None:
            ax.scatter(data[:, pair[0]], data[:, pair[1]], marker='.', edgecolors='none', alpha=alpha)
        else:
            # cs = 'rgbcmykrgbcmyk'
            markers = 'x+.o,<>^^<>,+x.'
            for j, ind in enumerate(np.unique(latent)):
                inds = (latent == ind)
                ax.scatter(data[inds, pair[0]], data[inds, pair[1]], c=colors[inds], cmap=pylab.get_cmap("jet"),
                           marker=markers[j], alpha=0.5, edgecolors='none', vmin=0, vmax=1)

        ax.set_xlabel(shorten(labels[pair[0]]))
        ax.set_ylabel(shorten(labels[pair[1]]))

    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.scatter(data[:, 0], data[:, 1], marker='.')

    pylab.rcParams['font.size'] = 12  #6
    pylab.draw()
    #fig.set_tight_layout(True)
    fig.tight_layout()
    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.set_visible(False)
    filename = outfile + '.png'
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    fig.savefig(outfile + '.png')  #df')
    pylab.close('all')
    return True 
開發者ID:gregversteeg,項目名稱:bio_corex,代碼行數:48,代碼來源:vis_corex.py

示例9: plot_rels

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''):
    ns, n = data.shape
    if labels is None:
        labels = list(map(str, list(range(n))))
    ncol = 5
    nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))

    fig, axs = pylab.subplots(nrow, ncol)
    fig.set_size_inches(5 * ncol, 5 * nrow)
    pairs = list(combinations(list(range(n)), 2))
    if colors is not None:
        colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors))

    for ax, pair in zip(axs.flat, pairs):
        diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]])
        diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]])
        ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x])
        ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y])
        ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"),
                       marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1)

        ax.set_xlabel(shorten(labels[pair[0]]))
        ax.set_ylabel(shorten(labels[pair[1]]))

    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.scatter(data[:, 0], data[:, 1], marker='.')

    fig.suptitle(title, fontsize=16)
    pylab.rcParams['font.size'] = 12  #6
    # pylab.draw()
    # fig.set_tight_layout(True)
    pylab.tight_layout()
    pylab.subplots_adjust(top=0.95)
    for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
        ax.set_visible(False)
    filename = outfile + '.png'
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    fig.savefig(outfile + '.png')
    pylab.close('all')
    return True


# Hierarchical graph visualization utilities 
開發者ID:gregversteeg,項目名稱:LinearCorex,代碼行數:46,代碼來源:vis_corex.py

示例10: vis_vert2kp

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import get_cmap [as 別名]
def vis_vert2kp(verts, vert2kp, face, mvs=None):
    """
    verts: N x 3
    vert2kp: K x N

    For each keypoint, visualize its weights on each vertex.
    Base color is white, pick a color for each kp.
    Using the weights, interpolate between base and color.

    """
    from psbody.mesh.mesh import Mesh
    from psbody.mesh.meshviewer import MeshViewer, MeshViewers
    from psbody.mesh.sphere import Sphere

    num_kp = vert2kp.shape[0]
    if mvs is None:
        mvs = MeshViewers((4, 4))
    # mv = MeshViewer()
    # Generate colors
    import pylab
    cm = pylab.get_cmap('gist_rainbow')
    cms = 255 * np.array([cm(1. * i / num_kp)[:3] for i in range(num_kp)])
    base = np.zeros((1, 3)) * 255
    # base = np.ones((1, 3)) * 255

    verts = convert2np(verts)
    vert2kp = convert2np(vert2kp)

    num_row = len(mvs)
    num_col = len(mvs[0])

    colors = []
    for k in range(num_kp):
        # Nx1 for this kp.
        weights = vert2kp[k].reshape(-1, 1)
        # So we can see it,,
        weights = weights / weights.max()
        cm = cms[k, None]
        # Simple linear interpolation,,
        # cs = np.uint8((1-weights) * base + weights * cm)
        # In [0, 1]
        cs = ((1 - weights) * base + weights * cm) / 255.
        colors.append(cs)

        # sph = [Sphere(center=jc, radius=.03).to_mesh(c/255.) for jc, c in zip(vert,cs)]
        # mvs[int(k/4)][k%4].set_dynamic_meshes(sph)
        mvs[int(k % num_row)][int(k / num_row)].set_dynamic_meshes(
            [Mesh(verts, face, vc=cs)]) 
開發者ID:akanazawa,項目名稱:cmr,代碼行數:50,代碼來源:bird_vis.py


注:本文中的pylab.get_cmap方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。