本文整理匯總了Python中pylab.gcf方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.gcf方法的具體用法?Python pylab.gcf怎麽用?Python pylab.gcf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.gcf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: copy_figure_to_clipboard
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def copy_figure_to_clipboard(figure='gcf'):
"""
Copies the specified figure to the system clipboard. Specifying 'gcf'
will use the current figure.
"""
try:
import pyqtgraph as _p
# Get the current figure if necessary
if figure is 'gcf': figure = _s.pylab.gcf()
# Store the figure as an image
path = _os.path.join(_s.settings.path_home, "clipboard.png")
figure.savefig(path)
# Set the clipboard. I know, it's weird to use pyqtgraph, but
# This covers both Qt4 and Qt5 with their Qt4 wrapper!
_p.QtGui.QApplication.instance().clipboard().setImage(_p.QtGui.QImage(path))
except:
print("This function currently requires pyqtgraph to be installed.")
示例2: get_figure_window_geometry
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def get_figure_window_geometry(fig='gcf'):
"""
This will currently only work for Qt4Agg and WXAgg backends.
Returns position, size
postion = [x, y]
size = [width, height]
fig can be 'gcf', a number, or a figure object.
"""
if type(fig)==str: fig = _pylab.gcf()
elif _fun.is_a_number(fig): fig = _pylab.figure(fig)
# Qt4Agg backend. Probably would work for other Qt stuff
if _pylab.get_backend().find('Qt') >= 0:
size = fig.canvas.window().size()
pos = fig.canvas.window().pos()
return [[pos.x(),pos.y()], [size.width(),size.height()]]
else:
print("get_figure_window_geometry() only implemented for QtAgg backend.")
return None
示例3: on_epoch_end
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def on_epoch_end(self, epoch, logs={}):
self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
self.show_edit_distance(256)
word_batch = next(self.text_img_gen)[0]
res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
if word_batch['the_input'][0].shape[0] < 256:
cols = 2
else:
cols = 1
for i in range(self.num_display_words):
pylab.subplot(self.num_display_words // cols, cols, i + 1)
if K.image_data_format() == 'channels_first':
the_input = word_batch['the_input'][i, 0, :, :]
else:
the_input = word_batch['the_input'][i, :, :, 0]
pylab.imshow(the_input.T, cmap='Greys_r')
pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
fig = pylab.gcf()
fig.set_size_inches(10, 13)
pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
pylab.close()
示例4: save_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def save_plot(self, filename):
plt.ion()
targarr = np.array(self.targvalue)
self.posi[0].set_xdata(self.wt_positions[:,0])
self.posi[0].set_ydata(self.wt_positions[:,1])
while len(self.plotel)>0:
self.plotel.pop(0).remove()
self.plotel = self.shape_plot.plot(np.array([self.wt_positions[[i,j],0] for i, j in self.elnet_layout.keys()]).T,
np.array([self.wt_positions[[i,j],1] for i, j in self.elnet_layout.keys()]).T, 'y-', linewidth=1)
for i in range(len(self.posb)):
self.posb[i][0].set_xdata(self.iterations)
self.posb[i][0].set_ydata(targarr[:,i])
self.legend.texts[i].set_text('%s = %8.2f'%(self.targname[i], targarr[-1,i]))
self.objf_plot.set_xlim([0, self.iterations[-1]])
self.objf_plot.set_ylim([0.5, 1.2])
if not self.title == '':
plt.title('%s = %8.2f'%(self.title, getattr(self, self.title)))
plt.draw()
#print self.iterations[-1] , ': ' + ', '.join(['%s=%6.2f'%(self.targname[i], targarr[-1,i]) for i in range(len(self.targname))])
with open(self.result_file+'.results','a') as f:
f.write( '%d:'%(self.inc) + ', '.join(['%s=%6.2f'%(self.targname[i], targarr[-1,i]) for i in range(len(self.targname))]) +
'\n')
#plt.show()
#plt.savefig(filename)
display(plt.gcf())
#plt.show()
clear_output(wait=True)
示例5: generateImages
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def generateImages(picklefile, pickledir, filehash, imagedir, pietype):
leaf_file = open(os.path.join(pickledir, picklefile), 'rb')
(piedata, pielabels) = cPickle.load(leaf_file)
leaf_file.close()
pylab.figure(1, figsize=(6.5,6.5))
ax = pylab.axes([0.2, 0.15, 0.6, 0.6])
pylab.pie(piedata, labels=pielabels)
pylab.savefig(os.path.join(imagedir, '%s-%s.png' % (filehash, pietype)))
pylab.gcf().clear()
os.unlink(os.path.join(pickledir, picklefile))
示例6: test_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def test_plot():
time = np.arange(N_SAMPLES)*1e-3
sample = np.random.randn(N_SAMPLES)
plt.plot(time, sample, label="Gaussian noise")
plt.title("1000s Timetrace \n (use the slider to scroll and the spin-box "
"to set the width)")
plt.xlabel('Time (s)')
plt.legend(fancybox=True)
q = ScrollingToolQT(plt.gcf(), scroll_step=1)
return q # WARNING: it's important to return this object otherwise
# python will delete the reference and the GUI will not respond!
示例7: test_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def test_plot():
dx = 1e-3 # this is the sampling period (or grid spacing) of `sample`
sample = np.random.randn(N_SAMPLES)
line, = plt.plot([], [], label="Gaussian noise")
plt.legend(fancybox=True)
plt.title("Use the slider to scroll and the spin-box to set the width")
q = ScrollingPlotQT(fig=plt.gcf(), line=line, ydata=sample, dx=1e-3)
return q # WARNING: it's important to return this object otherwise
# python will delete the reference and the GUI will not respond!
示例8: save_plots
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def save_plots(self, folder):
import pylab as pl
pl.gcf().set_size_inches(15, 15)
pl.clf()
self.homography.plot_original()
pl.savefig(join(folder, 'homography-original.jpg'))
pl.clf()
self.homography.plot_rectified()
pl.savefig(join(folder, 'homography-rectified.jpg'))
pl.clf()
self.driving_layers.plot(overlay_alpha=0.7)
pl.savefig(join(folder, 'segnet-driving.jpg'))
pl.clf()
self.facade_layers.plot(overlay_alpha=0.7)
pl.savefig(join(folder, 'segnet-i12-facade.jpg'))
pl.clf()
self.plot_grids()
pl.savefig(join(folder, 'grid.jpg'))
pl.clf()
self.plot_regions()
pl.savefig(join(folder, 'regions.jpg'))
pl.clf()
pl.gcf().set_size_inches(6, 4)
self.plot_facade_cuts()
pl.savefig(join(folder, 'facade-cuts.jpg'), dpi=300)
pl.savefig(join(folder, 'facade-cuts.svg'))
imsave(join(folder, 'walls.png'), self.wall_colors)
示例9: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def plot(self):
"""Visualize the label images (e.g. for debugging)
:return: The current figure
"""
import pylab
pylab.imshow(self.image, interpolation='nearest')
return pylab.gcf()
示例10: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def plot(self, derivative=0, xmin="auto", xmax="auto", steps=500, smooth=0, simple='auto', clear=True, yaxis='left'):
if simple=='auto': simple = self.simple
# get the min and max
if xmin=="auto": xmin = self.xmin
if xmax=="auto": xmax = self.xmax
# get and clear the figure and axes
f = _pylab.gcf()
if clear and yaxis=='left': f.clf()
# setup the right-hand axis
if yaxis=='right': a = _pylab.twinx()
else: a = _pylab.gca()
# define a new simple function to plot, then plot it
def f(x): return self.evaluate(x, derivative, smooth, simple)
_pylab_help.plot_function(f, xmin, xmax, steps, clear, axes=a)
# label it
th = "th"
if derivative == 1: th = "st"
if derivative == 2: th = "nd"
if derivative == 3: th = "rd"
if derivative: self.ylabel = str(derivative)+th+" derivative of "+self.ylabel+" spline"
a.set_xlabel(self.xlabel)
a.set_ylabel(self.ylabel)
a.figure.canvas.Refresh()
示例11: get_figure_window
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def get_figure_window(figure='gcf'):
"""
This will search through the windows and return the one containing the figure
"""
if figure == 'gcf': figure = _pylab.gcf()
return figure.canvas.GetParent()
示例12: set_figure_window_geometry
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def set_figure_window_geometry(fig='gcf', position=None, size=None):
"""
This will currently only work for Qt4Agg and WXAgg backends.
postion = [x, y]
size = [width, height]
fig can be 'gcf', a number, or a figure object.
"""
if type(fig)==str: fig = _pylab.gcf()
elif _fun.is_a_number(fig): fig = _pylab.figure(fig)
# Qt4Agg backend. Probably would work for other Qt stuff
if _pylab.get_backend().find('Qt') >= 0:
w = fig.canvas.window()
if not size == None:
w.resize(size[0],size[1])
if not position == None:
w.move(position[0], position[1])
# WXAgg backend. Probably would work for other Qt stuff.
elif _pylab.get_backend().find('WX') >= 0:
w = fig.canvas.Parent
if not size == None:
w.SetSize(size)
if not position == None:
w.SetPosition(position)
示例13: coarsen_all_traces
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def coarsen_all_traces(level=2, exponential=False, axes="all", figure=None):
"""
This function does nearest-neighbor coarsening of the data. See
spinmob.fun.coarsen_data for more information.
Parameters
----------
level=2
How strongly to coarsen.
exponential=False
If True, use the exponential method (great for log-x plots).
axes="all"
Which axes to coarsen.
figure=None
Which figure to use.
"""
if axes=="gca": axes=_pylab.gca()
if axes=="all":
if not figure: f = _pylab.gcf()
axes = f.axes
if not _fun.is_iterable(axes): axes = [axes]
for a in axes:
# get the lines from the plot
lines = a.get_lines()
# loop over the lines and trim the data
for line in lines:
if isinstance(line, _mpl.lines.Line2D):
coarsen_line(line, level, exponential, draw=False)
_pylab.draw()
示例14: export_figure
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def export_figure(dpi=200, figure="gcf", path=None):
"""
Saves the actual postscript data for the figure.
"""
if figure=="gcf": figure = _pylab.gcf()
if path==None: path = _s.dialogs.Save("*.*", default_directory="save_plot_default_directory")
if path=="":
print("aborted.")
return
figure.savefig(path, dpi=dpi)
示例15: save_images
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import gcf [as 別名]
def save_images(self, images, base_filename, flattened=True):
self.ensure_dir(self.dirname)
for i in self.saved_image_indices:
label = self.labels[i].lower().replace(" ", "_")
image = images[i, :].copy()
if flattened:
image = image.reshape(self.image_shape)
image[np.isnan(image)] = 0
figure = pylab.gcf()
axes = pylab.gca()
extra_kwargs = {}
if self.color:
extra_kwargs["cmap"] = "gray"
assert image.min() >= 0, "Image can't contain negative numbers"
if image.max() <= 1:
image *= 256
image[image > 255] = 255
axes.imshow(image.astype("uint8"), **extra_kwargs)
axes.get_xaxis().set_visible(False)
axes.get_yaxis().set_visible(False)
filename = base_filename + ".png"
subdir = join(self.dirname, label)
self.ensure_dir(subdir)
path = join(subdir, filename)
figure.savefig(
path,
bbox_inches='tight')
self.saved_images[i][base_filename] = path