本文整理匯總了Python中pylab.fill方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.fill方法的具體用法?Python pylab.fill怎麽用?Python pylab.fill使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.fill方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fill_polygon
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def fill_polygon(g, o):
a = asarray(g.exterior)
pylab.fill(a[:,0], a[:,1], o, alpha=0.5)
示例2: drawDef
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def drawDef(dfeat, dy, dx, mindef=0.001, distr="father"):
"""
auxiliary funtion to draw recursive levels of deformation
"""
from matplotlib.patches import Ellipse
pylab.ioff()
if distr == "father":
py = [0, 0, 2, 2]
px = [0, 2, 0, 2]
if distr == "child":
py = [0, 1, 1, 2]
px = [1, 2, 0, 1]
ordy = [0, 0, 1, 1]
ordx = [0, 1, 0, 1]
x1 = -0.5 + dx
x2 = 2.5 + dx
y1 = -0.5 + dy
y2 = 2.5 + dy
if distr == "father":
pylab.fill([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1],
"r", alpha=0.15, edgecolor="b", lw=1)
for l in range(len(py)):
aux = dfeat[ordy[l], ordx[l], :].clip(-1, -mindef)
wh = numpy.exp(-mindef / aux[0]) / numpy.exp(1)
hh = numpy.exp(-mindef / aux[1]) / numpy.exp(1)
e = Ellipse(
xy=[(px[l] + dx), (py[l] + dy)], width=wh, height=hh, alpha=0.35)
x1 = -0.75 + dx + px[l]
x2 = 0.75 + dx + px[l]
y1 = -0.76 + dy + py[l]
y2 = 0.75 + dy + py[l]
col = numpy.array([wh * hh] * 3).clip(0, 1)
if distr == "father":
col[0] = 0
e.set_facecolor(col)
pylab.gca().add_artist(e)
if distr == "father":
pylab.fill([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1],
"b", alpha=0.15, edgecolor="b", lw=1)
示例3: rgb_patch_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def rgb_patch_plot (
rgb_colors,
color_names,
title,
filename,
patch_gap = 0.05,
num_across = 6):
'''Draw a set of color patches, specified as linear rgb colors.'''
def draw_patch (x0, y0, color, name, patch_gap):
'''Draw a patch of color.'''
# patch relative vertices
m = patch_gap
omm = 1.0 - m
poly_dx = [m, m, omm, omm]
poly_dy = [m, omm, omm, m]
# construct vertices
poly_x = [ x0 + dx_i for dx_i in poly_dx ]
poly_y = [ y0 + dy_i for dy_i in poly_dy ]
pylab.fill (poly_x, poly_y, color)
if name != None:
dtext = 0.1
pylab.text (x0+dtext, y0+dtext, name, size=8.0)
# make plot with each color with one patch
pylab.clf()
num_colors = len (rgb_colors)
for i in range (0, num_colors):
(iy, ix) = divmod (i, num_across)
# get color as a displayable string
colorstring = colormodels.irgb_string_from_rgb (rgb_colors [i])
if color_names != None:
name = color_names [i]
else:
name = None
draw_patch (float (ix), float (-iy), colorstring, name, patch_gap)
pylab.axis ('off')
pylab.title (title)
print ('Saving plot %s' % str (filename))
pylab.savefig (filename)
示例4: spectrum_subplot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def spectrum_subplot (spectrum):
'''Plot a spectrum, with x-axis the wavelength, and y-axis the intensity.
The curve is colored at that wavelength by the (approximate) color of a
pure spectral color at that wavelength, with intensity constant over wavelength.
(This means that dark looking colors here mean that wavelength is poorly viewed by the eye.
This is not a complete plotting function, e.g. no file is saved, etc.
It is assumed that this function is being called by one that handles those things.'''
(num_wl, num_cols) = spectrum.shape
# get rgb colors for each wavelength
rgb_colors = numpy.empty ((num_wl, 3))
for i in range (0, num_wl):
wl_nm = spectrum [i][0]
xyz = ciexyz.xyz_from_wavelength (wl_nm)
rgb_colors [i] = colormodels.rgb_from_xyz (xyz)
# scale to make brightest rgb value = 1.0
rgb_max = numpy.max (rgb_colors)
scaling = 1.0 / rgb_max
rgb_colors *= scaling
# draw color patches (thin vertical lines matching the spectrum curve) in color
for i in range (0, num_wl-1): # skipping the last one here to stay in range
x0 = spectrum [i][0]
x1 = spectrum [i+1][0]
y0 = spectrum [i][1]
y1 = spectrum [i+1][1]
poly_x = [x0, x1, x1, x0]
poly_y = [0.0, 0.0, y1, y0]
color_string = colormodels.irgb_string_from_rgb (rgb_colors [i])
pylab.fill (poly_x, poly_y, color_string, edgecolor=color_string)
# plot intensity as a curve
pylab.plot (
spectrum [:,0], spectrum [:,1],
color='k', linewidth=2.0, antialiased=True)
示例5: drawDeform
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def drawDeform(dfeat, mindef=0.001):
"""
draw the deformation weight of an object model
"""
from matplotlib.patches import Ellipse
lev = len(dfeat)
if 1:
sy = 1
sx = lev
else:
sy = lev
sx = 1
pylab.subplot(sy, sx, 1)
x1 = -0.5
x2 = 0.5
y1 = -0.5
y2 = 0.5
pylab.fill([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1],
"b", alpha=0.15, edgecolor="b", lw=1)
pylab.fill([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1],
"r", alpha=0.15, edgecolor="r", lw=1)
wh = numpy.exp(-mindef / dfeat[0][0, 0, 0]) / numpy.exp(1)
hh = numpy.exp(-mindef / dfeat[0][0, 0, 1]) / numpy.exp(1)
e = Ellipse(xy=[0, 0], width=wh, height=hh, alpha=0.35)
col = numpy.array([wh * hh] * 3).clip(0, 1)
col[0] = 0
e.set_facecolor(col)
pylab.axis("off")
pylab.gca().add_artist(e)
pylab.gca().set_ylim(-0.5, 0.5)
pylab.gca().set_xlim(-0.5, 0.5)
for l in range(1, lev):
pylab.subplot(sy, sx, l + 1)
for ry in range(2 ** (l - 1)):
for rx in range(2 ** (l - 1)):
drawDef(dfeat[l][ry * 2:(ry + 1) * 2, rx * 2:(rx + 1)
* 2, 2:] * 4 ** l, 4 * ry, 4 * rx, distr="child")
drawDef(dfeat[l][ry * 2:(ry + 1) * 2, rx * 2:(rx + 1) * 2, :2] *
4 ** l, ry * 2 ** (l), rx * 2 ** (l), mindef=mindef, distr="father")
# pylab.gca().set_ylim(-0.5,(2.6)**l)
pylab.axis("off")
pylab.gca().set_ylim((2.6) ** l, -0.5)
pylab.gca().set_xlim(-0.5, (2.6) ** l)
示例6: spectrum_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def spectrum_plot (
spectrum,
title,
filename,
xlabel = 'Wavelength ($nm$)',
ylabel = 'Intensity ($W/m^2$)'):
'''Plot for a single spectrum -
In a two part graph, plot:
top: color of the spectrum, as a large patch.
low: graph of spectrum intensity vs wavelength (x axis).
The graph is colored by the (approximated) color of each wavelength.
Each wavelength has equal physical intensity, so the variation in
apparent intensity (e.g. 400, 800 nm are very dark, 550 nm is bright),
is due to perceptual factors in the eye. This helps show how much
each wavelength contributes to the percieved color.
spectrum - spectrum to plot
title - title for plot
filename - filename to save plot to
xlabel - label for x axis
ylabel - label for y axis
'''
pylab.clf ()
# upper plot - solid patch of color that matches the spectrum color
pylab.subplot (2,1,1)
pylab.title (title)
color_string = colormodels.irgb_string_from_rgb (
colormodels.rgb_from_xyz (ciexyz.xyz_from_spectrum (spectrum)))
poly_x = [0.0, 1.0, 1.0, 0.0]
poly_y = [0.0, 0.0, 1.0, 1.0]
pylab.fill (poly_x, poly_y, color_string)
# draw a solid line around the patch to look nicer
pylab.plot (poly_x, poly_y, color='k', linewidth=2.0)
pylab.axis ('off')
# lower plot - spectrum vs wavelength, with colors of the associated spectral lines below
pylab.subplot (2,1,2)
spectrum_subplot (spectrum)
tighten_x_axis (spectrum [:,0])
pylab.xlabel (xlabel)
pylab.ylabel (ylabel)
# done
print ('Saving plot %s' % str (filename))
pylab.savefig (filename)
#
# Color vs param plot
#
示例7: color_vs_param_plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def color_vs_param_plot (
param_list,
rgb_colors,
title,
filename,
tight = False,
plotfunc = pylab.plot,
xlabel = 'param',
ylabel = 'RGB Color'):
'''Plot for a color that varies with a parameter -
In a two part figure, draw:
top: color as it varies with parameter (x axis)
low: r,g,b values, as linear 0.0-1.0 values, of the attempted color.
param_list - list of parameters (x axis)
rgb_colors - numpy array, one row for each param in param_list
title - title for plot
filename - filename to save plot to
plotfunc - optional plot function to use (default pylab.plot)
xlabel - label for x axis
ylabel - label for y axis (default 'RGB Color')
'''
pylab.clf ()
# draw color bars in upper plot
pylab.subplot (2,1,1)
pylab.title (title)
# no xlabel, ylabel in upper plot
num_points = len (param_list)
for i in range (0, num_points-1):
x0 = param_list [i]
x1 = param_list [i+1]
y0 = 0.0
y1 = 1.0
poly_x = [x0, x1, x1, x0]
poly_y = [y0, y0, y1, y1]
color_string = colormodels.irgb_string_from_rgb (rgb_colors [i])
pylab.fill (poly_x, poly_y, color_string, edgecolor=color_string)
if tight:
tighten_x_axis (param_list)
# draw rgb curves in lower plot
pylab.subplot (2,1,2)
# no title in lower plot
plotfunc (param_list, rgb_colors [:,0], color='r', label='Red')
plotfunc (param_list, rgb_colors [:,1], color='g', label='Green')
plotfunc (param_list, rgb_colors [:,2], color='b', label='Blue')
if tight:
tighten_x_axis (param_list)
pylab.xlabel (xlabel)
pylab.ylabel (ylabel)
print ('Saving plot %s' % str (filename))
pylab.savefig (filename)
#
# Some specialized plots
#
示例8: plot_item_triangles
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import fill [as 別名]
def plot_item_triangles(self, m, ind, x, r, k, label, U,
rerr, feature_weights, band_ind):
"""plot_item_triangles(self, m, ind, x, r, k, label, U,
rerr, feature_weights, band_ind)
Plot selection m (index ind, data in x) with triangles to
mark the largest residual values on band_ind indices
(i.e., you need to pick them before calling this).
To use this, define plot_item() in your data set's class
to call this function instead.
"""
if x == [] or r == []:
print "Error: No data in x and/or r."
return
pylab.clf()
# xvals, x, and r need to be column vectors
pylab.plot(self.xvals, r, 'r-', linewidth=0.5, label='Expected')
pylab.plot(self.xvals, x, 'b.-', linewidth=1, label='Observations')
# Boost font sizes for axis and tick labels
pylab.xlabel(self.xlabel) #, fontsize=16)
pylab.ylabel(self.ylabel) #, fontsize=16)
'''
pylab.xticks(fontsize=16)
pylab.yticks(fontsize=16)
'''
pylab.title('DEMUD selection %d (%s), item %d, using K=%d' % \
(m, label, ind, k))
pylab.legend(fontsize=10)
# width of triangles to plot
width = (self.xvals.max() - self.xvals.min())/100.0
for band in band_ind:
w = float(self.xvals[band])
reproj = r[band]
# Draw a triangle that points up if r > x
# or down if r < x
pylab.fill([w-width, w+width, w],
[reproj, reproj, x[band]],
'0.6', zorder=1)
outdir = os.path.join('results', self.name)
if not os.path.exists(outdir):
os.mkdir(outdir)
figfile = os.path.join(outdir, 'sel-%d-k-%d-(%s).pdf' % (m, k, label))
pylab.savefig(figfile)
print 'Wrote plot to %s' % figfile
pylab.close()