當前位置: 首頁>>代碼示例>>Python>>正文


Python pylab.colorbar方法代碼示例

本文整理匯總了Python中pylab.colorbar方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.colorbar方法的具體用法?Python pylab.colorbar怎麽用?Python pylab.colorbar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pylab的用法示例。


在下文中一共展示了pylab.colorbar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_wt_layout

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plot_wt_layout(wt_layout, borders=None, depth=None):
    fig = plt.figure(figsize=(6,6), dpi=2000)
    fs = 14
    ax = plt.subplot(111)

    if depth is not None:
        N = 100
        X, Y = plt.meshgrid(plt.linspace(depth[:,0].min(), depth[:,0].max(), N), 
                            plt.linspace(depth[:,1].min(), depth[:,1].max(), N))
        Z = plt.griddata(depth[:,0],depth[:,1],depth[:,2],X,Y, interp='linear')
        plt.contourf(X,Y,Z, label='depth [m]')
        plt.colorbar().set_label('water depth [m]')
    #ax.plot(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], 'or', label='baseline position')
    
    ax.scatter(wt_layout.wt_positions[:,0], wt_layout.wt_positions[:,1], wt_layout._wt_list('rotor_diameter'), label='baseline position')

    if borders is not None:
        ax.plot(borders[:,0], borders[:,1], 'r--', label='border')
        
    ax.set_xlabel('x [m]'); 
    ax.set_ylabel('y [m]')
    ax.axis('equal');
    ax.legend(loc='lower left') 
開發者ID:DTUWindEnergy,項目名稱:TOPFARM,代碼行數:25,代碼來源:plot.py

示例2: heatmap

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def heatmap(df,fname=None,cmap='seismic',log=False):
    """Plot a heat map"""

    from matplotlib.colors import LogNorm
    f=plt.figure(figsize=(8,8))
    ax=f.add_subplot(111)
    norm=None
    df=df.replace(0,.1)
    if log==True:
        norm=LogNorm(vmin=df.min().min(), vmax=df.max().max())
    hm = ax.pcolor(df,cmap=cmap,norm=norm)
    plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm)
    plt.yticks(np.arange(0.5, len(df.index), 1), df.index)
    plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90)
    #ax.axvline(4, color='gray'); ax.axvline(8, color='gray')
    plt.tight_layout()
    if fname != None:
        f.savefig(fname+'.png')
    return ax 
開發者ID:dmnfarrell,項目名稱:smallrnaseq,代碼行數:21,代碼來源:plotting.py

示例3: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plot_confusion_matrix(self, matrix, labels):
        if not self.to_save and not self.to_show:
            return

        pylab.figure()
        pylab.imshow(matrix, interpolation='nearest', cmap=pylab.cm.jet)
        pylab.title("Confusion Matrix")

        for i, vi in enumerate(matrix):
            for j, vj in enumerate(vi):
                pylab.annotate("%.1f" % vj, xy=(j, i), horizontalalignment='center', verticalalignment='center', fontsize=9)

        pylab.colorbar()

        classes = np.arange(len(labels))
        pylab.xticks(classes, labels)
        pylab.yticks(classes, labels)

        pylab.ylabel('Expected label')
        pylab.xlabel('Predicted label') 
開發者ID:tonybeltramelli,項目名稱:Deep-Spying,代碼行數:22,代碼來源:View.py

示例4: plot_functional_map

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plot_functional_map(C, newfig=True):
    vmax = max(np.abs(C.max()), np.abs(C.min()))
    vmin = -vmax
    C = ((C - vmin) / (vmax - vmin)) * 2 - 1
    if newfig:
        pl.figure(figsize=(5,5))
    else:
        pl.clf()
    ax = pl.gca()
    pl.pcolor(C[::-1], edgecolor=(0.9, 0.9, 0.9, 1), lw=0.5,
              vmin=-1, vmax=1, cmap=nice_mpl_color_map())
    # colorbar
    tick_locs   = [-1., 0.0, 1.0]
    tick_labels = ['min', 0, 'max']
    bar = pl.colorbar()
    bar.locator = matplotlib.ticker.FixedLocator(tick_locs)
    bar.formatter = matplotlib.ticker.FixedFormatter(tick_labels)
    bar.update_ticks()
    ax.set_aspect(1)
    pl.xticks([])
    pl.yticks([])
    if newfig:
        pl.show() 
開發者ID:tneumann,項目名稱:cmm,代碼行數:25,代碼來源:functional_map.py

示例5: plotFields

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
	# Receptive Fields Summary
	try:
		W = layer.W
	except:
		W = layer
	wp = W.eval().transpose();
	if len(np.shape(wp)) < 4:		# Fully connected layer, has no shape
		fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)	
	else:			# Convolutional layer already has shape
		features, channels, iy, ix = np.shape(wp)
		if channel is not None:
			fields = wp[:,channel,:,:]
		else:
			fields = np.reshape(wp,[features*channels,iy,ix])

	perRow = int(math.floor(math.sqrt(fields.shape[0])))
	perColumn = int(math.ceil(fields.shape[0]/float(perRow)))

	fig = mpl.figure(figOffset); mpl.clf()
	
	# Using image grid
	from mpl_toolkits.axes_grid1 import ImageGrid
	grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
	for i in range(0,np.shape(fields)[0]):
		im = grid[i].imshow(fields[i],cmap=cmap); 

	grid.cbar_axes[0].colorbar(im)
	mpl.title('%s Receptive Fields' % layer.name)
	
	# old way
	# fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
	# tiled = []
	# for i in range(0,perColumn*perRow,perColumn):
	# 	tiled.append(np.hstack(fields2[i:i+perColumn]))
	# 
	# tiled = np.vstack(tiled)
	# mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
	mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar() 
開發者ID:robb-brown,項目名稱:IntroToDeepLearning,代碼行數:41,代碼來源:TensorFlowInterface.py

示例6: plotOutput

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
	# Output summary
	try:
		W = layer.output
	except:
		W = layer
	wp = W.eval(feed_dict=feed_dict);
	if len(np.shape(wp)) < 4:		# Fully connected layer, has no shape
		temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
		fields = np.reshape(temp,[1]+fieldShape)
	else:			# Convolutional layer already has shape
		wp = np.rollaxis(wp,3,0)
		features, channels, iy,ix = np.shape(wp)
		if channel is not None:
			fields = wp[:,channel,:,:]
		else:
			fields = np.reshape(wp,[features*channels,iy,ix])

	perRow = int(math.floor(math.sqrt(fields.shape[0])))
	perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
	fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
	tiled = []
	for i in range(0,perColumn*perRow,perColumn):
		tiled.append(np.hstack(fields2[i:i+perColumn]))

	tiled = np.vstack(tiled)
	if figOffset is not None:
		mpl.figure(figOffset); mpl.clf(); 

	mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar(); 
開發者ID:robb-brown,項目名稱:IntroToDeepLearning,代碼行數:32,代碼來源:TensorFlowInterface.py

示例7: plotFields

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
	# Receptive Fields Summary
	W = layer.W
	wp = W.eval().transpose();
	if len(np.shape(wp)) < 4:		# Fully connected layer, has no shape
		fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
	else:			# Convolutional layer already has shape
		features, channels, iy, ix = np.shape(wp)
		if channel is not None:
			fields = wp[:,channel,:,:]
		else:
			fields = np.reshape(wp,[features*channels,iy,ix])

	fieldsN = min(fields.shape[0],maxFields)
	perRow = int(math.floor(math.sqrt(fieldsN)))
	perColumn = int(math.ceil(fieldsN/float(perRow)))

	fig = mpl.figure(figName); mpl.clf()

	# Using image grid
	from mpl_toolkits.axes_grid1 import ImageGrid
	grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
	for i in range(0,fieldsN):
		im = grid[i].imshow(fields[i],cmap=cmap);

	grid.cbar_axes[0].colorbar(im)
	mpl.title('%s Receptive Fields' % layer.name)

	# old way
	# fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
	# tiled = []
	# for i in range(0,perColumn*perRow,perColumn):
	# 	tiled.append(np.hstack(fields2[i:i+perColumn]))
	#
	# tiled = np.vstack(tiled)
	# mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
	mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar() 
開發者ID:robb-brown,項目名稱:IntroToDeepLearning,代碼行數:39,代碼來源:TensorFlowInterface.py

示例8: plotOutput

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
	# Output summary
	W = layer.output
	wp = W.eval(feed_dict=feed_dict);
	if len(np.shape(wp)) < 4:		# Fully connected layer, has no shape
		temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
		fields = np.reshape(temp,[1]+fieldShape)
	else:			# Convolutional layer already has shape
		wp = np.rollaxis(wp,3,0)
		features, channels, iy,ix = np.shape(wp)
		if channel is not None:
			fields = wp[:,channel,:,:]
		else:
			fields = np.reshape(wp,[features*channels,iy,ix])

	perRow = int(math.floor(math.sqrt(fields.shape[0])))
	perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
	fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
	tiled = []
	for i in range(0,perColumn*perRow,perColumn):
		tiled.append(np.hstack(fields2[i:i+perColumn]))

	tiled = np.vstack(tiled)
	if figOffset is not None:
		mpl.figure(figOffset); mpl.clf();

	mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar(); 
開發者ID:robb-brown,項目名稱:IntroToDeepLearning,代碼行數:29,代碼來源:TensorFlowInterface.py

示例9: contour_plot

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def contour_plot(func):
    rose = func()
    XS, YS = plt.meshgrid(np.linspace(-2, 2, 20), np.linspace(-2,2, 20));
    ZS = np.array([rose(x1=x, x2=y).f_xy for x,y in zip(XS.flatten(),YS.flatten())]).reshape(XS.shape);
    plt.contourf(XS, YS, ZS, 50);
    plt.colorbar() 
開發者ID:DTUWindEnergy,項目名稱:TOPFARM,代碼行數:8,代碼來源:tutorial.py

示例10: plot

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'):
        import pylab
        pylab.clf()
        pylab.imshow(-np.log10(self.results[self._start_y:,:]), 
            origin="lower",
            aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
        pylab.colorbar()

        # Fix xticks
        XMAX = float(self.results.shape[1])  # The max integer on xaxis
        xpos = list(range(0, int(XMAX), int(XMAX/5)))
        xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration]
        pylab.xticks(xpos, xx, fontsize=16)

        # Fix yticks
        YMAX = float(self.results.shape[0])  # The max integer on xaxis
        ypos = list(range(0, int(YMAX), int(YMAX/5)))
        yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling]
        pylab.yticks(ypos, yy, fontsize=16)

        #pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16)
        #pylab.title("%s echoes" %  filename.replace(".png", ""), fontsize=25)
        pylab.xlabel("Time (seconds)", fontsize=25)
        pylab.ylabel("Frequence (Hz)", fontsize=25)
        pylab.tight_layout()
        if filename:
            pylab.savefig(filename) 
開發者ID:cokelaer,項目名稱:spectrum,代碼行數:29,代碼來源:spectrogram.py

示例11: examplify

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def examplify(cls, fname):
        """
        example of how to use
        """
        logger.info("examplify starts")
        
        # model
        model = MultiClassLogisticRegression(epsilon=0.01, n_scan = 100)
        
        # learn
        st = time.time()
        model.learn(fname)
        et = time.time()
        print "learning time: %d [s]" % ((et - st)/1000)

        # predict
        y_pred = model.predict(fname)
        
        # confusion matrix
        y_label = np.loadtxt(fname, delimiter=" ")[:, 0]

        cm = confusion_matrix(y_label, y_pred)
        #pl.matshow(cm)
        #pl.title('Confusion matrix')
        #pl.colorbar()
        #pl.ylabel('True label')
        #pl.xlabel('Predicted label')
        #pl.show()

        print cm
        print "accurary: %d [%%]" % (np.sum(cm.diagonal()) * 100.0/np.sum(cm))
        logger.info("examplify finished") 
開發者ID:kzky,項目名稱:python-online-machine-learning-library,代碼行數:34,代碼來源:multiclass_logistic_regression.py

示例12: dendogram

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def dendogram(correlation_matrix,
	save_as = '',
	figsize=(50,50),
	):

	correlation_matrix = path.abspath(path.expanduser(correlation_matrix))

	y = hier_clustering(correlation_matrix, method='centroid')
	z = hier_clustering(y, orientation='right')

	fig = pylab.figure(figsize=figsize)
	ax_1 = fig.add_axes([0.1,0.1,0.2,0.8])
	ax_1.set_xticks([])
	ax_1.set_yticks([])

	ax_2 = fig.add_axes([0.3,0.1,0.6,0.8])
	index = z['leaves']
	correlation_matrix = correlation_matrix[index,:]
	correlation_matrix = correlation_matrix[:,index]
	im = ax_2.matshow(correlation_matrix, aspect='auto', origin='lower')
	ax_2.set_xticks([])
	ax_2.set_yticks([])

	ax_color = fig.add_axes([0.91,0.1,0.02,0.8])
	colorbar = pylab.colorbar(im, cax=ax_color)
	colorbar.ax.tick_params(labelsize=75)

	# Display and save figure.
	if(save_as):
		fig.savefig(path.abspath(path.expanduser(save_as))) 
開發者ID:IBT-FMI,項目名稱:SAMRI,代碼行數:32,代碼來源:fc.py

示例13: plotHeatMap

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plotHeatMap(data, col='KL without null', label=''):

    #Compute and collate medians
    sel_cols = [x for x in data.columns if col in x]
    cmp_meds = data[sel_cols].median(axis=0)
    samples = sortSampleNames(getUniqueSamples(sel_cols))
    cell_lines = ['CHO', 'E14TG2A', 'BOB','RPE1', 'HAP1','K562','eCAS9','TREX2']
    sample_idxs = [(cell_lines.index(parseSampleName(x)[0]),x) for x in getUniqueSamples(sel_cols)]
    sample_idxs.sort()
    samples = [x[1] for x in sample_idxs]

    N = len(samples)
    meds = np.zeros((N,N))
    for colname in sel_cols:
        dir1, dir2 = getDirsFromFilename(colname.split('$')[-1])
        idx1, idx2 = samples.index(dir1), samples.index(dir2)
        meds[idx1,idx2] = cmp_meds[colname]
        meds[idx2,idx1] = cmp_meds[colname]

    for i in range(N):
        print(' '.join(['%.2f' % x for x in meds[i,:]]))
    print( np.median(meds[:,:-4],axis=0))

	#Display in Heatmap
    PL.figure(figsize=(5,5))
    PL.imshow(meds, cmap='hot_r', vmin = 0.0, vmax = 3.0, interpolation='nearest')
    PL.colorbar()
    PL.xticks(range(N))
    PL.yticks(range(N))
    PL.title("Median KL") # between %d mutational profiles (for %s with >%d mutated reads)" % (col, len(data), label, MIN_READS))
    ax1 = PL.gca()
    ax1.set_yticklabels([getSimpleName(x) for x in samples], rotation='horizontal')
    ax1.set_xticklabels([getSimpleName(x) for x in samples], rotation='vertical')
    PL.subplots_adjust(left=0.25,right=0.95,top=0.95, bottom=0.25)
    PL.show(block=False) 
    saveFig('median_kl_heatmap_cell_lines') 
開發者ID:felicityallen,項目名稱:SelfTarget,代碼行數:38,代碼來源:plot_kl_analysis.py

示例14: nice_imshow

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None):
    """Wrapper around pl.imshow"""
    if cmap is None:
        cmap = cm.jet
    if vmin is None:
        vmin = data.min()
    if vmax is None:
        vmax = data.max()
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap)
    pl.colorbar(im, cax=cax) 
開發者ID:mani-shailesh,項目名稱:satimage,代碼行數:14,代碼來源:util.py

示例15: plot_confusion_matrix

# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import colorbar [as 別名]
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(iris.target_names))
    plt.xticks(tick_marks, iris.target_names, rotation=45)
    plt.yticks(tick_marks, iris.target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label') 
開發者ID:kvoyager,項目名稱:GmdhPy,代碼行數:12,代碼來源:iris_recognition.py


注:本文中的pylab.colorbar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。