本文整理匯總了Python中pylab.clf方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.clf方法的具體用法?Python pylab.clf怎麽用?Python pylab.clf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.clf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_evaluation_episode_reward
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plot_evaluation_episode_reward():
pylab.clf()
sns.set_context("poster")
pylab.plot(0, 0)
episodes = [0]
average_scores = [0]
median_scores = [0]
for n in xrange(len(csv_evaluation)):
params = csv_evaluation[n]
episodes.append(params[0])
average_scores.append(params[1])
median_scores.append(params[2])
pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2)
pylab.xlabel("episodes")
pylab.ylabel("average score")
pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir)
pylab.clf()
pylab.plot(0, 0)
pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2)
pylab.xlabel("episodes")
pylab.ylabel("median score")
pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir)
示例2: plotdata
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plotdata(obsmode,spectrum,val,odict,sdict,
instr,fieldname,outdir,outname):
isetting=P.isinteractive()
P.ioff()
P.clf()
P.plot(obsmode,val,'.')
P.ylabel('(pysyn-syn)/syn')
P.xlabel('obsmode')
P.title("%s: %s"%(instr,fieldname))
P.savefig(os.path.join(outdir,outname+'_obsmode.ps'))
P.clf()
P.plot(spectrum,val,'.')
P.ylabel('(pysyn-syn)/syn')
P.xlabel('spectrum')
P.title("%s: %s"%(instr,fieldname))
P.savefig(os.path.join(outdir,outname+'_spectrum.ps'))
matplotlib.interactive(isetting)
示例3: summary
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def summary(self, Nbest=5, lw=2, plot=True, method="sumsquare_error"):
"""Plots the distribution of the data and Nbest distribution
"""
if plot:
pylab.clf()
self.hist()
self.plot_pdf(Nbest=Nbest, lw=lw, method=method)
pylab.grid(True)
Nbest = min(Nbest, len(self.distributions))
try:
names = self.df_errors.sort_values(
by=method).index[0:Nbest]
except:
names = self.df_errors.sort(method).index[0:Nbest]
return self.df_errors.loc[names]
示例4: plot_functional_map
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plot_functional_map(C, newfig=True):
vmax = max(np.abs(C.max()), np.abs(C.min()))
vmin = -vmax
C = ((C - vmin) / (vmax - vmin)) * 2 - 1
if newfig:
pl.figure(figsize=(5,5))
else:
pl.clf()
ax = pl.gca()
pl.pcolor(C[::-1], edgecolor=(0.9, 0.9, 0.9, 1), lw=0.5,
vmin=-1, vmax=1, cmap=nice_mpl_color_map())
# colorbar
tick_locs = [-1., 0.0, 1.0]
tick_labels = ['min', 0, 'max']
bar = pl.colorbar()
bar.locator = matplotlib.ticker.FixedLocator(tick_locs)
bar.formatter = matplotlib.ticker.FixedFormatter(tick_labels)
bar.update_ticks()
ax.set_aspect(1)
pl.xticks([])
pl.yticks([])
if newfig:
pl.show()
示例5: scattered_visual_brightness
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def scattered_visual_brightness ():
'''Plot the perceptual brightness of Rayleigh scattered light.'''
# get 'spectra' for y matching functions and multiply by 1/wl^4
spectrum_y = ciexyz.empty_spectrum()
(num_wl, num_cols) = spectrum_y.shape
for i in range (0, num_wl):
wl_nm = spectrum_y [i][0]
rayleigh = math.pow (550.0 / wl_nm, 4)
xyz = ciexyz.xyz_from_wavelength (wl_nm)
spectrum_y [i][1] = xyz [1] * rayleigh
pylab.clf ()
pylab.title ('Perceptual Brightness of Rayleigh Scattered Light')
pylab.xlabel ('Wavelength (nm)')
pylab.ylabel ('CIE $Y$ / $\lambda^4$')
spectrum_subplot (spectrum_y)
tighten_x_axis (spectrum_y [:,0])
# done
filename = 'Visual_scattering'
print ('Saving plot %s' % str (filename))
pylab.savefig (filename)
示例6: plotFields
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
# Receptive Fields Summary
try:
W = layer.W
except:
W = layer
wp = W.eval().transpose();
if len(np.shape(wp)) < 4: # Fully connected layer, has no shape
fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
else: # Convolutional layer already has shape
features, channels, iy, ix = np.shape(wp)
if channel is not None:
fields = wp[:,channel,:,:]
else:
fields = np.reshape(wp,[features*channels,iy,ix])
perRow = int(math.floor(math.sqrt(fields.shape[0])))
perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
fig = mpl.figure(figOffset); mpl.clf()
# Using image grid
from mpl_toolkits.axes_grid1 import ImageGrid
grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
for i in range(0,np.shape(fields)[0]):
im = grid[i].imshow(fields[i],cmap=cmap);
grid.cbar_axes[0].colorbar(im)
mpl.title('%s Receptive Fields' % layer.name)
# old way
# fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
# tiled = []
# for i in range(0,perColumn*perRow,perColumn):
# tiled.append(np.hstack(fields2[i:i+perColumn]))
#
# tiled = np.vstack(tiled)
# mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
示例7: plotOutput
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
# Output summary
try:
W = layer.output
except:
W = layer
wp = W.eval(feed_dict=feed_dict);
if len(np.shape(wp)) < 4: # Fully connected layer, has no shape
temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
fields = np.reshape(temp,[1]+fieldShape)
else: # Convolutional layer already has shape
wp = np.rollaxis(wp,3,0)
features, channels, iy,ix = np.shape(wp)
if channel is not None:
fields = wp[:,channel,:,:]
else:
fields = np.reshape(wp,[features*channels,iy,ix])
perRow = int(math.floor(math.sqrt(fields.shape[0])))
perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
tiled = []
for i in range(0,perColumn*perRow,perColumn):
tiled.append(np.hstack(fields2[i:i+perColumn]))
tiled = np.vstack(tiled)
if figOffset is not None:
mpl.figure(figOffset); mpl.clf();
mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
示例8: plotFields
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
# Receptive Fields Summary
W = layer.W
wp = W.eval().transpose();
if len(np.shape(wp)) < 4: # Fully connected layer, has no shape
fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
else: # Convolutional layer already has shape
features, channels, iy, ix = np.shape(wp)
if channel is not None:
fields = wp[:,channel,:,:]
else:
fields = np.reshape(wp,[features*channels,iy,ix])
fieldsN = min(fields.shape[0],maxFields)
perRow = int(math.floor(math.sqrt(fieldsN)))
perColumn = int(math.ceil(fieldsN/float(perRow)))
fig = mpl.figure(figName); mpl.clf()
# Using image grid
from mpl_toolkits.axes_grid1 import ImageGrid
grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
for i in range(0,fieldsN):
im = grid[i].imshow(fields[i],cmap=cmap);
grid.cbar_axes[0].colorbar(im)
mpl.title('%s Receptive Fields' % layer.name)
# old way
# fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
# tiled = []
# for i in range(0,perColumn*perRow,perColumn):
# tiled.append(np.hstack(fields2[i:i+perColumn]))
#
# tiled = np.vstack(tiled)
# mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
示例9: plotOutput
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
# Output summary
W = layer.output
wp = W.eval(feed_dict=feed_dict);
if len(np.shape(wp)) < 4: # Fully connected layer, has no shape
temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
fields = np.reshape(temp,[1]+fieldShape)
else: # Convolutional layer already has shape
wp = np.rollaxis(wp,3,0)
features, channels, iy,ix = np.shape(wp)
if channel is not None:
fields = wp[:,channel,:,:]
else:
fields = np.reshape(wp,[features*channels,iy,ix])
perRow = int(math.floor(math.sqrt(fields.shape[0])))
perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
tiled = []
for i in range(0,perColumn*perRow,perColumn):
tiled.append(np.hstack(fields2[i:i+perColumn]))
tiled = np.vstack(tiled)
if figOffset is not None:
mpl.figure(figOffset); mpl.clf();
mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
示例10: save_plots
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def save_plots(self, folder):
import pylab as pl
pl.gcf().set_size_inches(15, 15)
pl.clf()
self.homography.plot_original()
pl.savefig(join(folder, 'homography-original.jpg'))
pl.clf()
self.homography.plot_rectified()
pl.savefig(join(folder, 'homography-rectified.jpg'))
pl.clf()
self.driving_layers.plot(overlay_alpha=0.7)
pl.savefig(join(folder, 'segnet-driving.jpg'))
pl.clf()
self.facade_layers.plot(overlay_alpha=0.7)
pl.savefig(join(folder, 'segnet-i12-facade.jpg'))
pl.clf()
self.plot_grids()
pl.savefig(join(folder, 'grid.jpg'))
pl.clf()
self.plot_regions()
pl.savefig(join(folder, 'regions.jpg'))
pl.clf()
pl.gcf().set_size_inches(6, 4)
self.plot_facade_cuts()
pl.savefig(join(folder, 'facade-cuts.jpg'), dpi=300)
pl.savefig(join(folder, 'facade-cuts.svg'))
imsave(join(folder, 'walls.png'), self.wall_colors)
示例11: plot_episode_reward
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plot_episode_reward():
pylab.clf()
sns.set_context("poster")
pylab.plot(0, 0)
episodes = [0]
scores = [0]
for n in xrange(len(csv_episode)):
params = csv_episode[n]
episodes.append(params[0])
scores.append(params[1])
pylab.plot(episodes, scores, sns.xkcd_rgb["windows blue"], lw=2)
pylab.xlabel("episodes")
pylab.ylabel("score")
pylab.savefig("%s/episode_reward.png" % args.plot_dir)
示例12: plot_training_episode_highscore
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plot_training_episode_highscore():
pylab.clf()
sns.set_context("poster")
pylab.plot(0, 0)
episodes = [0]
highscore = [0]
for n in xrange(len(csv_training_highscore)):
params = csv_training_highscore[n]
episodes.append(params[0])
highscore.append(params[1])
pylab.plot(episodes, highscore, sns.xkcd_rgb["windows blue"], lw=2)
pylab.xlabel("episodes")
pylab.ylabel("highscore")
pylab.savefig("%s/training_episode_highscore.png" % args.plot_dir)
示例13: plot
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'):
import pylab
pylab.clf()
pylab.imshow(-np.log10(self.results[self._start_y:,:]),
origin="lower",
aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax)
pylab.colorbar()
# Fix xticks
XMAX = float(self.results.shape[1]) # The max integer on xaxis
xpos = list(range(0, int(XMAX), int(XMAX/5)))
xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration]
pylab.xticks(xpos, xx, fontsize=16)
# Fix yticks
YMAX = float(self.results.shape[0]) # The max integer on xaxis
ypos = list(range(0, int(YMAX), int(YMAX/5)))
yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling]
pylab.yticks(ypos, yy, fontsize=16)
#pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16)
#pylab.title("%s echoes" % filename.replace(".png", ""), fontsize=25)
pylab.xlabel("Time (seconds)", fontsize=25)
pylab.ylabel("Frequence (Hz)", fontsize=25)
pylab.tight_layout()
if filename:
pylab.savefig(filename)
示例14: calc_prominence
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def calc_prominence(params, labels, func=np.max, use_peaks = True):
labelled = []
norm = params.astype(float)
for (start, end, word) in labels:
if end -start == 0:
continue
#print start, end, word
if use_peaks:
peaks = []
#pylab.clf()
#pylab.plot(params[start:end])
(peaks, indices)=get_peaks(params[start:end])
if len(peaks) >0:
labelled.append(np.max(peaks))
#labelled.append(norm[start-5+peaks[0]])
# labelled.append([word,func(params[start:end])])
else:
labelled.append(0.0)
else:
#labelled.append([word, func(params[start-10:end])])
labelled.append(func(params[start:end]))
#raw_input()
return labelled
示例15: plot_mpc_preview
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import clf [as 別名]
def plot_mpc_preview(self):
import pylab
T = self.mpc_timestep
h = stance.com.z
g = -sim.gravity[2]
trange = [sim.time + k * T for k in range(len(self.x_mpc.X))]
pylab.ion()
pylab.clf()
pylab.subplot(211)
pylab.plot(trange, [v[0] for v in self.x_mpc.X])
pylab.plot(trange, [v[0] - v[2] * h / g for v in self.x_mpc.X])
pylab.subplot(212)
pylab.plot(trange, [v[0] for v in self.y_mpc.X])
pylab.plot(trange, [v[0] - v[2] * h / g for v in self.y_mpc.X])