本文整理匯總了Python中pylab.array方法的典型用法代碼示例。如果您正苦於以下問題:Python pylab.array方法的具體用法?Python pylab.array怎麽用?Python pylab.array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pylab
的用法示例。
在下文中一共展示了pylab.array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def draw(self):
self.read() #read current values
#self.read_test() #testing reading
print "Plotting..."
if len(self.channels) == 1:
NumberSamples = min(len(self.values), self.scale1.get())
CurrentXAxis = pylab.arange(len(self.values) - NumberSamples, len(self.values), 1)
self.line1[0].set_data(CurrentXAxis, pylab.array(self.values[-NumberSamples:]))
self.ax.axis([CurrentXAxis.min(), CurrentXAxis.max(), 0, 3.5])
elif len(self.channels) == 2:
NumberSamplesx = min(len(self.valuesx), self.scale1.get())
NumberSamplesy = min(len(self.valuesy), self.scale1.get())
self.line1[0].set_data(pylab.array(self.valuesx[-NumberSamplesx:]), pylab.array(self.valuesy[-NumberSamplesy:]))
self.drawing.draw()
self.root.after(25, self.draw)
return
示例2: _increase_contrast
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def _increase_contrast(image):
"""
Helper function for increasing contrast of image.
"""
# Create a local copy of the image.
copy = image.copy()
maxIntensity = 255.0
x = arange(maxIntensity)
# Parameters for manipulating image data.
phi = 1.3
theta = 1.5
y = (maxIntensity/phi)*(x/(maxIntensity/theta))**0.5
# Decrease intensity such that dark pixels become much darker,
# and bright pixels become slightly dark.
copy = (maxIntensity/phi)*(copy/(maxIntensity/theta))**2
copy = array(copy, dtype=uint8)
return copy
示例3: __init__
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def __init__(self, max_y_splines=100, simple=0):
# create this class, then add spline curves to it
# the splines are stored in a dictionary with the key
# as the parameter and the value is the spline_single
self.x_splines = {} # supplied by you
self.y_splines = [{},{},{},{},{}] # generated by this class, index is x-derivative
self.max_y_splines = max_y_splines # this sets the minimum x_parameter spacing of the y-splines
self.xmin = None # set the minimum and maximum values over which this is valid
self.xmax = None
self.ymin = None
self.ymax = None
self.xlabel = None
self.ylabel = None
self.zlabel = None
self._path = "(spline array not saved)"
self.simple=simple
示例4: scale_x
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def scale_x(scale, axes="current"):
"""
This function scales lines horizontally.
"""
if axes=="current": axes = _pylab.gca()
# get the lines from the plot
lines = axes.get_lines()
# loop over the lines and trim the data
for line in lines:
if isinstance(line, _mpl.lines.Line2D):
line.set_xdata(_pylab.array(line.get_xdata())*scale)
# update the title
title = axes.title.get_text()
title += ", x_scale="+str(scale)
axes.title.set_text(title)
# zoom to surround the data properly
auto_zoom()
示例5: spot_diagram
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def spot_diagram(s):
"""Plot the spot diagram for the given surface, or element.
Args:
s: Object (usually :class:`~pyoptools.raytrace.comp_lib.CCD`)
whose spot diagram will be plotted.
"""
hl=s.hit_list
X=[]
Y=[]
COL=[]
if len(hl) >0:
for i in hl:
p=i[0]
# Hitlist[1] points to the incident ray
col=wavelength2RGB(i[1].wavelength)
X.append(p[0])
Y.append(p[1])
COL.append(col)
max=array(X+Y).max
min=array(X+Y).min
plot(X,Y,"o",)
axis("equal")
示例6: spot_diagram_c
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def spot_diagram_c(s):
"""Plot the spot diagram for the given surface, or element using
the rays colors.
Args:
s: Object (usually :class:`~pyoptools.raytrace.comp_lib.CCD`)
whose spot diagram will be plotted.
"""
hl=s.hit_list
X=[]
Y=[]
COL=[]
if len(hl) >0:
for i in hl:
p=i[0]
# Hitlist[1] points to the incident ray
col=wavelength2RGB(i[1].wavelength)
plot(p[0],p[1],"o",color=col)
#X.append(p[0])
#Y.append(p[1])
#COL.append(col)
#max=array(X+Y).max
#min=array(X+Y).min
axis("equal")
示例7: _process_segment
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def _process_segment(self, model, dataset, page, page_xywh, page_id, input_file, orig_img_size, n):
for i, data in enumerate(dataset):
w,h = orig_img_size
generated = model.inference(data['label'], data['inst'], data['image'])
dewarped = array(generated.data[0].permute(1,2,0).detach().cpu())
bin_array = array(255*(dewarped>ocrolib.midrange(dewarped)),'B')
dewarped = ocrolib.array2pil(bin_array)
dewarped = dewarped.resize((w,h))
page_xywh['features'] += ',dewarped'
file_id = input_file.ID.replace(self.input_file_grp, self.image_grp)
if file_id == input_file.ID:
file_id = concat_padded(self.image_grp, n)
file_path = self.workspace.save_image_file(dewarped,
file_id,
page_id=page_id,
file_grp=self.image_grp,
force=self.parameter['force']
)
page.add_AlternativeImage(AlternativeImageType(filename=file_path, comments=page_xywh['features']))
示例8: setup
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def setup(self, channels):
print "Setting up the channels..."
self.channels = channels
# Setup oscilloscope window
self.root = Tkinter.Tk()
self.root.wm_title("PiScope")
if len(self.channels) == 1:
# Create x and y axis
xAchse = pylab.arange(0, 4000, 1)
yAchse = pylab.array([0]*4000)
# Create the plot
fig = pylab.figure(1)
self.ax = fig.add_subplot(111)
self.ax.set_title("Oscilloscope")
self.ax.set_xlabel("Time")
self.ax.set_ylabel("Amplitude")
self.ax.axis([0, 4000, 0, 3.5])
elif len(self.channels) == 2:
# Create x and y axis
xAchse = pylab.array([0]*4000)
yAchse = pylab.array([0]*4000)
# Create the plot
fig = pylab.figure(1)
self.ax = fig.add_subplot(111)
self.ax.set_title("X-Y Plotter")
self.ax.set_xlabel("Channel " + str(self.channels[0]))
self.ax.set_ylabel("Channel " + str(self.channels[1]))
self.ax.axis([0, 3.5, 0, 3.5])
self.ax.grid(True)
self.line1 = self.ax.plot(xAchse, yAchse, '-')
# Integrate plot on oscilloscope window
self.drawing = FigureCanvasTkAgg(fig, master=self.root)
self.drawing.show()
self.drawing.get_tk_widget().pack(side=Tkinter.TOP, fill=Tkinter.BOTH, expand=1)
# Setup navigation tools
tool = NavigationToolbar2TkAgg(self.drawing, self.root)
tool.update()
self.drawing._tkcanvas.pack(side=Tkinter.TOP, fill=Tkinter.BOTH, expand=1)
return
示例9: plot_fixed_x
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def plot_fixed_x(self, x_values, x_derivative=0, steps=1000, smooth=0, simple='auto', ymin="auto", ymax="auto", format=True, clear=1):
"""
plots the data at fixed x-value, so z vs x
"""
if simple=='auto': simple=self.simple
# get the min and max
if ymin=="auto": ymin = self.ymin
if ymax=="auto": ymax = self.ymax
if clear: _pylab.gca().clear()
if not type(x_values) in [type([]), type(_pylab.array([]))]: x_values = [x_values]
for x in x_values:
# define a new simple function to plot, then plot it
def f(y): return self.evaluate(x, y, x_derivative, smooth, simple)
_pylab_help.plot_function(f, ymin, ymax, steps, 0, False)
# label it
a = _pylab.gca()
a.set_xlabel(self.ylabel)
if x_derivative: a.set_ylabel(str(x_derivative)+" "+str(self.xlabel)+" derivative of "+self.zlabel)
else: a.set_ylabel(self.zlabel)
a.set_title(self._path+"\nSpline array plot at fixed x = "+self.xlabel)
a.get_lines()[-1].set_label("x ("+self.xlabel+") = "+str(x))
if format: _s.format_figure()
return a
示例10: plot_fixed_y
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def plot_fixed_y(self, y_values, x_derivative=0, steps=1000, smooth=0, simple='auto', xmin="auto", xmax="auto", format=True, clear=1):
"""
plots the data at a fixed y-value, so z vs y
"""
if simple=='auto': simple=self.simple
# get the min and max
if xmin=="auto": xmin = self.xmin
if xmax=="auto": xmax = self.xmax
if clear: _pylab.gca().clear()
if not type(y_values) in [type([]), type(_pylab.array([]))]: y_values = [y_values]
for y in y_values:
# define a new simple function to plot, then plot it
def f(x): return self.evaluate(x, y, x_derivative, smooth, simple)
_pylab_help.plot_function(f, xmin, xmax, steps, 0, True)
# label it
a = _pylab.gca()
th = "th"
if x_derivative == 1: th = "st"
if x_derivative == 2: th = "nd"
if x_derivative == 3: th = "rd"
if x_derivative: a.set_ylabel(str(x_derivative)+th+" "+self.xlabel+" derivative of "+self.zlabel+" spline")
else: a.set_ylabel(self.zlabel)
a.set_xlabel(self.xlabel)
a.set_title(self._path+"\nSpline array plot at fixed y "+self.ylabel)
a.get_lines()[-1].set_label("y ("+self.ylabel+") = "+str(y))
if format: _s.format_figure()
return a
示例11: load_spline_array
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def load_spline_array(path=None, text="Give me a spline array to load, jerkface! No, YOU'RE the jerkface."):
a = _s.load_object(path, text)
b = copy_spline_array(a)
b._path = a._path
_s.save_object(b, b._path)
return b
示例12: image_neighbor_smooth
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def image_neighbor_smooth(xlevel=0.2, ylevel=0.2, image="auto"):
"""
This will bleed nearest neighbor pixels into each other with
the specified weight factors.
"""
if image == "auto": image = _pylab.gca().images[0]
Z = _n.array(image.get_array())
# store this image in the undo list
global image_undo_list
image_undo_list.append([image, Z])
if len(image_undo_list) > 10: image_undo_list.pop(0)
# get the diagonal smoothing level (eliptical, and scaled down by distance)
dlevel = ((xlevel**2+ylevel**2)/2.0)**(0.5)
# don't touch the first column
new_Z = [Z[0]*1.0]
for m in range(1,len(Z)-1):
new_Z.append(Z[m]*1.0)
for n in range(1,len(Z[0])-1):
new_Z[-1][n] = (Z[m,n] + xlevel*(Z[m+1,n]+Z[m-1,n]) + ylevel*(Z[m,n+1]+Z[m,n-1]) \
+ dlevel*(Z[m+1,n+1]+Z[m-1,n+1]+Z[m+1,n-1]+Z[m-1,n-1]) ) \
/ (1.0+xlevel*2+ylevel*2 + dlevel*4)
# don't touch the last column
new_Z.append(Z[-1]*1.0)
# images have transposed data
image.set_array(_n.array(new_Z))
# update the plot
_pylab.draw()
示例13: shift
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def shift(xshift=0, yshift=0, progressive=0, axes="gca"):
"""
This function adds an artificial offset to the lines.
yshift amount to shift vertically
xshift amount to shift horizontally
axes="gca" axes to do this on, "gca" means "get current axes"
progressive=0 progressive means each line gets more offset
set to 0 to shift EVERYTHING
"""
if axes=="gca": axes = _pylab.gca()
# get the lines from the plot
lines = axes.get_lines()
# loop over the lines and trim the data
for m in range(0,len(lines)):
if isinstance(lines[m], _mpl.lines.Line2D):
# get the actual data values
xdata = _n.array(lines[m].get_xdata())
ydata = _n.array(lines[m].get_ydata())
# add the offset
if progressive:
xdata += m*xshift
ydata += m*yshift
else:
xdata += xshift
ydata += yshift
# update the data for this line
lines[m].set_data(xdata, ydata)
# zoom to surround the data properly
auto_zoom()
示例14: scale_y
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def scale_y(scale, axes="current", lines="all"):
"""
This function scales lines vertically.
You can specify a line index, such as lines=0 or lines=[1,2,4]
"""
if axes=="current": axes = _pylab.gca()
# get the lines from the plot
lines = axes.get_lines()
# loop over the lines and trim the data
for line in lines:
if isinstance(line, _mpl.lines.Line2D):
line.set_ydata(_pylab.array(line.get_ydata())*scale)
# update the title
title = axes.title.get_text()
if not title == "":
title += ", y_scale="+str(scale)
axes.title.set_text(title)
# zoom to surround the data properly
auto_zoom()
示例15: set_yticks
# 需要導入模塊: import pylab [as 別名]
# 或者: from pylab import array [as 別名]
def set_yticks(start, step, axes="gca"):
"""
This will generate a tick array and apply said array to the axis
"""
if axes=="gca": axes = _pylab.gca()
# first get one of the tick label locations
xposition = axes.yaxis.get_ticklabels()[0].get_position()[0]
# get the bounds
ymin, ymax = axes.get_ylim()
# get the starting tick
nstart = int(_pylab.floor((ymin-start)/step))
nstop = int(_pylab.ceil((ymax-start)/step))
ticks = []
for n in range(nstart,nstop+1): ticks.append(start+n*step)
axes.set_yticks(ticks)
# set the x-position
for t in axes.yaxis.get_ticklabels():
x, y = t.get_position()
t.set_position((xposition, y))
_pylab.draw()