本文整理匯總了Python中pykdtree.kdtree.KDTree方法的典型用法代碼示例。如果您正苦於以下問題:Python kdtree.KDTree方法的具體用法?Python kdtree.KDTree怎麽用?Python kdtree.KDTree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pykdtree.kdtree
的用法示例。
在下文中一共展示了kdtree.KDTree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_tree
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def get_tree(name):
"""
Get KD-tree for the tile with the given name.
Args:
name(str): The name of the tile.
"""
from pykdtree.kdtree import KDTree
lat_grid, lon_grid = SRTM30.get_grids(name)
lat_grid, lon_grid = np.meshgrid(lat_grid, lon_grid, indexing = "ij")
x, y, z = _latlon_to_cart(lat_grid, lon_grid)
X = np.concatenate([x.reshape(-1, 1, order = "C"),
y.reshape(-1, 1, order = "C"),
z.reshape(-1, 1, order = "C")], axis = 1)
tree = KDTree(X.astype(np.float32))
return tree
示例2: test3d
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d():
#7, 93, 45
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real)
dist, idx = kdtree.query(query_pts, sqr_dists=True)
epsilon = 1e-5
assert idx[0] == 7
assert idx[1] == 93
assert idx[2] == 45
assert dist[0] == 0
assert abs(dist[1] - 3.) < epsilon * dist[1]
assert abs(dist[2] - 20001.) < epsilon * dist[2]
示例3: test3d_float32
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_float32():
#7, 93, 45
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]], dtype=np.float32)
kdtree = KDTree(data_pts_real.astype(np.float32))
dist, idx = kdtree.query(query_pts, sqr_dists=True)
epsilon = 1e-5
assert idx[0] == 7
assert idx[1] == 93
assert idx[2] == 45
assert dist[0] == 0
assert abs(dist[1] - 3.) < epsilon * dist[1]
assert abs(dist[2] - 20001.) < epsilon * dist[2]
assert kdtree.data_pts.dtype == np.float32
示例4: test3d_8n_ub
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_8n_ub():
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real)
dist, idx = kdtree.query(query_pts, k=8, distance_upper_bound=10e3, sqr_dists=False)
exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03,
8.17063009e+03, np.Inf, np.Inf, np.Inf],
[ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03,
5.43793210e+03, 8.07855631e+03, 8.17119970e+03, np.Inf],
[ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03,
6.81038455e+03, 9.89140135e+03, np.Inf, np.Inf]])
n = 100
exp_idx = np.array([[ 7, 8, 6, 9, 5, n, n, n],
[93, 94, 92, 95, 91, 96, 90, n],
[45, 46, 44, 47, 43, 48, n, n]])
assert np.array_equal(idx, exp_idx)
assert np.allclose(dist, exp_dist)
示例5: test3d_8n_ub_leaf20
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_8n_ub_leaf20():
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real, leafsize=20)
dist, idx = kdtree.query(query_pts, k=8, distance_upper_bound=10e3, sqr_dists=False)
exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03,
8.17063009e+03, np.Inf, np.Inf, np.Inf],
[ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03,
5.43793210e+03, 8.07855631e+03, 8.17119970e+03, np.Inf],
[ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03,
6.81038455e+03, 9.89140135e+03, np.Inf, np.Inf]])
n = 100
exp_idx = np.array([[ 7, 8, 6, 9, 5, n, n, n],
[93, 94, 92, 95, 91, 96, 90, n],
[45, 46, 44, 47, 43, 48, n, n]])
assert np.array_equal(idx, exp_idx)
assert np.allclose(dist, exp_dist)
示例6: test3d_8n_ub_eps
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_8n_ub_eps():
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real)
dist, idx = kdtree.query(query_pts, k=8, eps=0.1, distance_upper_bound=10e3, sqr_dists=False)
exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03,
8.17063009e+03, np.Inf, np.Inf, np.Inf],
[ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03,
5.43793210e+03, 8.07855631e+03, 8.17119970e+03, np.Inf],
[ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03,
6.81038455e+03, 9.89140135e+03, np.Inf, np.Inf]])
n = 100
exp_idx = np.array([[ 7, 8, 6, 9, 5, n, n, n],
[93, 94, 92, 95, 91, 96, 90, n],
[45, 46, 44, 47, 43, 48, n, n]])
assert np.array_equal(idx, exp_idx)
assert np.allclose(dist, exp_dist)
示例7: test3d_large_query
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_large_query():
# Target idxs: 7, 93, 45
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
# Repeat the same points multiple times to get 60000 query points
n = 20000
query_pts = np.repeat(query_pts, n, axis=0)
kdtree = KDTree(data_pts_real)
dist, idx = kdtree.query(query_pts, sqr_dists=True)
epsilon = 1e-5
assert np.all(idx[:n] == 7)
assert np.all(idx[n:2*n] == 93)
assert np.all(idx[2*n:] == 45)
assert np.all(dist[:n] == 0)
assert np.all(abs(dist[n:2*n] - 3.) < epsilon * dist[n:2*n])
assert np.all(abs(dist[2*n:] - 20001.) < epsilon * dist[2*n:])
示例8: test3d_mask
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_mask():
#7, 93, 45
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real)
query_mask = np.zeros(data_pts_real.shape[0])
query_mask[6:10] = True
dist, idx = kdtree.query(query_pts, sqr_dists=True, mask=query_mask)
epsilon = 1e-5
assert idx[0] == 5 # would be 7 if no mask
assert idx[1] == 93
assert idx[2] == 45
# would be 0 if no mask
assert abs(dist[0] - 66759196.1053) < epsilon * dist[0]
assert abs(dist[1] - 3.) < epsilon * dist[1]
assert abs(dist[2] - 20001.) < epsilon * dist[2]
示例9: _create_resample_kdtree
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def _create_resample_kdtree(self):
"""Set up kd tree on input."""
# Get input information
valid_input_index, source_lons, source_lats = \
_get_valid_input_index_dask(self.source_geo_def,
self.target_geo_def,
self.reduce_data,
self.radius_of_influence)
# FIXME: Is dask smart enough to only compute the pixels we end up
# using even with this complicated indexing
input_coords = lonlat2xyz(source_lons, source_lats)
valid_input_index = da.ravel(valid_input_index)
input_coords = input_coords[valid_input_index, :]
input_coords = input_coords.compute()
# Build kd-tree on input
input_coords = input_coords.astype(np.float)
valid_input_index, input_coords = da.compute(valid_input_index,
input_coords)
return valid_input_index, KDTree(input_coords)
示例10: nearest_neighbour
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def nearest_neighbour(a, b):
"""
find the nearest neighbours of a in b using KDTree
Parameters
----------
a : (n, ) numpy.ndarray
b : (n, ) numpy.ndarray
Returns
----------
dist : n float
Euclidian distance of the closest neighbour in b to a
index : n float
The index of the closest neighbour in b to a in terms of Euclidian distance
"""
tree = KDTree(b)
dist, index = tree.query(a)
return (dist, index)
示例11: kdtree
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def kdtree(coordinates, use_pykdtree=True, **kwargs):
"""
Create a KD-Tree object with the given coordinate arrays.
Automatically transposes and flattens the coordinate arrays into a single
matrix for use in the KD-Tree classes.
All other keyword arguments are passed to the KD-Tree class.
If installed, package ``pykdtree`` will be used instead of
:class:`scipy.spatial.cKDTree` for better performance. Not all features are
available in ``pykdtree`` so if you require the scipy version set
``use_pykdtee=False``.
Parameters
----------
coordinates : tuple of arrays
Arrays with the coordinates of each data point. Should be in the
following order: (easting, northing, vertical, ...). All coordinate
arrays are used.
use_pykdtree : bool
If True, will prefer ``pykdtree`` (if installed) over
:class:`scipy.spatial.cKDTree`. Otherwise, always use the scipy
version.
Returns
-------
tree : :class:`scipy.spatial.cKDTree` or ``pykdtree.kdtree.KDTree``
The tree instance initialized with the given coordinates and arguments.
"""
points = np.transpose(n_1d_arrays(coordinates, len(coordinates)))
if pyKDTree is not None and use_pykdtree:
tree = pyKDTree(points, **kwargs)
else:
tree = cKDTree(points, **kwargs)
return tree
示例12: test1d
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test1d():
data_pts = np.arange(1000)
kdtree = KDTree(data_pts, leafsize=15)
query_pts = np.arange(400, 300, -10)
dist, idx = kdtree.query(query_pts)
assert idx[0] == 400
assert dist[0] == 0
assert idx[1] == 390
示例13: test3d_float32_mismatch
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_float32_mismatch():
#7, 93, 45
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]], dtype=np.float32)
kdtree = KDTree(data_pts_real)
dist, idx = kdtree.query(query_pts, sqr_dists=True)
示例14: test3d_float32_mismatch2
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test3d_float32_mismatch2():
#7, 93, 45
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real.astype(np.float32))
try:
dist, idx = kdtree.query(query_pts, sqr_dists=True)
assert False
except TypeError:
assert True
示例15: test_scipy_comp
# 需要導入模塊: from pykdtree import kdtree [as 別名]
# 或者: from pykdtree.kdtree import KDTree [as 別名]
def test_scipy_comp():
query_pts = np.array([[ 787014.438, -340616.906, 6313018.],
[751763.125, -59925.969, 6326205.5],
[769957.188, -202418.125, 6321069.5]])
kdtree = KDTree(data_pts_real)
assert id(kdtree.data) == id(kdtree.data_pts)