當前位置: 首頁>>代碼示例>>Python>>正文


Python pyecharts.Bar方法代碼示例

本文整理匯總了Python中pyecharts.Bar方法的典型用法代碼示例。如果您正苦於以下問題:Python pyecharts.Bar方法的具體用法?Python pyecharts.Bar怎麽用?Python pyecharts.Bar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pyecharts的用法示例。


在下文中一共展示了pyecharts.Bar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_with_chart

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def show_with_chart(top_10):
    """
        把最低的十個城市和溫度生成餅狀圖
        :param top_10:
        :return:
        """
    # 1.獲取城市列表
    citys = list(map(lambda item: item['city'], top_10))
    
    # 2.最低溫度列表
    temp_lows = list(map(lambda item: item['temp_low'], top_10))
    
    # 3.生成餅狀圖並寫入到html文件中
    bar = Bar("最低氣溫排行榜")
    
    bar.add("最低溫度", citys, temp_lows)
    
    # 渲染
    bar.render('temperature.html') 
開發者ID:xingag,項目名稱:spider_python,代碼行數:21,代碼來源:spider_china_weather.py

示例2: pic

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def pic(data, file):
    # all_poet = [i[0] for i in data[:30]]
    # all_num = [i[1] for i in data[:30]]
    # br = pyecharts.Bar(title=file.rstrip('.txt')+'最高頻的多字意象:', title_top=0,  width=1200, height=700,)

    # br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    # br.use_theme('dark')
    # br.render(path=file.rstrip('.txt')+'最高頻的多字意象:_條形圖'+'.html')

    all_poet = [i[0] for i in data[:500]]
    all_num = [i[1] for i in data[:500]]
    wordcloud = WordCloud(title='\n'+file.rstrip('.txt')+'多字意象分析',title_pos='center', width=1300, height=620, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=45)
    wordcloud.render(path=file.rstrip('.txt')+'最高頻的多字意象_詞雲'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:21,代碼來源:多字意象分析.py

示例3: pic

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def pic(data, file):
    # all_poet = [i[0] for i in data[:30]]
    # all_num = [i[1] for i in data[:30]]
    # br = pyecharts.Bar(title=file.rstrip('.txt')+'最愛用的單字意象:', title_top=0,  width=1200, height=700,)

    # br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    # br.use_theme('dark')
    # br.render(path=file.rstrip('.txt')+'最愛用的單字意象:_條形圖'+'.html')

    all_poet = [i[0] for i in data[:500]]
    all_num = [i[1] for i in data[:500]]
    wordcloud = WordCloud(width=1300, height=620, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=45)
    wordcloud.render(path=file.rstrip('.txt')+'最愛用的單字意象_詞雲'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:21,代碼來源:單字意象分析.py

示例4: bar_chart

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def bar_chart():
    d = db.session.query(func.count(extract('Day', Purchase.purchase_addtime)),
                         extract('Day', Purchase.purchase_addtime)).group_by(
        extract('Day', Purchase.purchase_addtime)
    ).all()

    attr = ["{}號".format(j) for _,j in d]
    v1 = [i for i,_ in d]
    bar = Bar("日采購量")
    bar.add(
        "",
        attr,
        v1,
        is_datazoom_show=True,
        datazoom_type="both",
        datazoom_range=[10, 25],
    )
    return bar


# 銷售表格
# 銷售量 
開發者ID:agamgn,項目名稱:flask-Purchase_and_sale,代碼行數:24,代碼來源:uilt.py

示例5: create_simple_bar

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def create_simple_bar():
    bar = Bar("我的第一個圖表", "這裏是副標題")
    bar.add("服裝", ["襯衫", "羊毛衫", "雪紡衫", "褲子", "高跟鞋", "襪子"], [5, 20, 36, 10, 75, 90])
    bar.renderer = 'svg'
    return bar 
開發者ID:kinegratii,項目名稱:django-echarts,代碼行數:7,代碼來源:demo_data.py

示例6: get_echarts_instance

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def get_echarts_instance(self, *args, **kwargs):
        device_data = models.Device.objects.values('device_type').annotate(count=Count('device_type'))
        device_types, counters = fetch(device_data, 'device_type', 'count')
        pie = Pie("設備分類", page_title='設備分類', width='100%')
        pie.add("設備分類", device_types, counters, is_label_show=True)

        battery_lifes = models.Device.objects.values('name', 'battery_life')
        names, lifes = fetch(battery_lifes, 'name', 'battery_life')
        bar = Bar('設備電量', page_title='設備電量', width='100%')
        bar.add("設備電量", names, lifes)
        page = Page.from_charts(pie, bar)
        return page 
開發者ID:kinegratii,項目名稱:django-echarts,代碼行數:14,代碼來源:backend_views.py

示例7: get_echarts_instance

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def get_echarts_instance(self, *args, **kwargs):
        bar = Bar("我的第一個圖表", "這裏是副標題")
        bar.add("服裝", ["襯衫", "羊毛衫", "雪紡衫", "褲子", "高跟鞋", "襪子"], [5, 20, 36, 10, 75, 90])
        return bar 
開發者ID:kinegratii,項目名稱:django-echarts,代碼行數:6,代碼來源:bar_backend_view.py

示例8: plot_chart

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def plot_chart(counter, chart_type='Bar'):
    items = [item[0] for item in counter]
    values = [item[1] for item in counter]

    if chart_type == 'Bar':
        chart = Bar('微博動態詞頻統計')
        chart.add('詞頻', items, values, is_more_utils=True)
    else:
        chart = Pie('微博動態詞頻統計')
        chart.add('詞頻', items, values, is_label_show=True, is_more_utils=True)

    chart.render('weibo_wordfrq.html')

#畫出微博發布時間的統計圖 
開發者ID:starFalll,項目名稱:Spider,代碼行數:16,代碼來源:Data_analysis.py

示例9: plot_create_time

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def plot_create_time(time_lists):
    recent_time = re.compile(r'\d{2}月\d{2}日',re.S)
    long_time = re.compile(r'(\d{4}-\d{2}-\d{2})',re.S)
    tmp_lists = []#保存**月**日格式的數據
    tmp_nums = []#統計**月**日發帖數量
    long_lists = []#保存20**-**-**格式的數據
    long_nums = []#統計20**-**-**發帖數量
    for t in time_lists:
        res = re.findall(recent_time, t)
        if(res):#res[0]為**月**日格式的數據

            if(not tmp_lists or res[0]!= tmp_lists[-1]):#列表為空或者不與前一個日期重複
                tmp_lists.append(res[0])
                tmp_nums.append(1)
            else:#與前一個日期重複,計數加一
                tmp_nums[-1]+=1
        else:#res[0]20**-**-**格式的數據
            res = re.findall(long_time,t)

            if(not long_lists or res[0]!=long_lists[-1]):
                long_lists.append(res[0])
                long_nums.append(1)
            else:
                long_nums[-1]+=1
    #將時間按照從遠到進的順序排列
    tmp_lists.reverse()
    tmp_nums.reverse()
    long_lists.reverse()
    long_nums.reverse()
    time_list = long_lists + tmp_lists
    time_nums = long_nums + tmp_nums
    chart = Bar('用戶微博動態發布時間')
    chart.add('動態數', time_list, time_nums, is_more_utils=True,datazoom_range=[10,40],is_datazoom_show=True)
    chart.render("weibo_dynamic.html")

#可以指定需要分析的用戶的uid(必須先存在conf.yaml裏麵,並且運行了一次sina_spider程序) 
開發者ID:starFalll,項目名稱:Spider,代碼行數:38,代碼來源:Data_analysis.py

示例10: pic

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def pic(data, file):
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'最受歡迎的詞牌', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme('dark')
    br.render(path=file.rstrip('.txt')+'最受歡迎的詞牌_條形圖'+'.html')

    all_poet = [i[0] for i in data[:1000]]
    all_num = [i[1] for i in data[:1000]]
    wordcloud = WordCloud(width=1300, height=620)
    wordcloud.add("", all_poet, all_num, word_size_range=[5, 50])
    wordcloud.render(path=file.rstrip('.txt')+'最受歡迎的詞牌_詞雲'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:16,代碼來源:宋詞詞牌名分析.py

示例11: pic

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def pic(data, file):
    pyecharts.configure(
    jshost=None,
    echarts_template_dir=None,
    force_js_embed=None,
    output_image=None,
    global_theme='vintage'
    )
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'詩人最愛用的動詞', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme("vintage")
    br.render(path=file.rstrip('.txt')+'詩人最愛用的動詞_條形圖'+'.html')

    all_poet = [i[0] for i in data[:600]]
    all_num = [i[1] for i in data[:600]]
    wordcloud = WordCloud(title='\n'+file.rstrip('.txt')+'詩人最愛用的動詞',title_pos='center', width=1500, height=800, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=80)
    wordcloud.render(path=file.rstrip('.txt')+'詩人最愛用的動詞_詞雲'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:28,代碼來源:高頻動詞分析.py

示例12: pic

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def pic(data, file):
    
    pyecharts.configure(
    jshost=None,
    echarts_template_dir=None,
    force_js_embed=None,
    output_image=None,
    global_theme='infographic'
    )
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'最常見的地名', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme('infographic')
    br.render(path=file.rstrip('.txt')+'最常見的地名_條形圖'+'.html')

    all_poet = [i[0] for i in data[:700]]
    all_num = [i[1] for i in data[:700]]
    wordcloud = WordCloud(title=file.rstrip('.txt')+'最常見的地名'+'\n\n', title_pos='center', width=1500, height=800, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=70)
    wordcloud.render(path=file.rstrip('.txt')+'最常見的地名_詞雲'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:29,代碼來源:古詩詞常見地名.py

示例13: pic

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def pic(data, file):
    pyecharts.configure(
    jshost=None,
    echarts_template_dir=None,
    force_js_embed=None,
    output_image=None,
    global_theme='shine'
    )
    all_poet = [i[0] for i in data[:30]]
    all_num = [i[1] for i in data[:30]]
    br = pyecharts.Bar(title=file.rstrip('.txt')+'詩人最愛用的形容詞', title_top=0,  width=1200, height=700,)

    br.add('', all_poet, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)
    br.use_theme('shine')
    br.render(path=file.rstrip('.txt')+'詩人最愛用的形容詞_條形圖'+'.html')

    all_poet = [i[0] for i in data[:600]]
    all_num = [i[1] for i in data[:600]]
    wordcloud = WordCloud(title='\n'+file.rstrip('.txt')+'詩人最愛用的形容詞',title_pos='center', width=1500, height=800, )
    shape = ['circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star']
    wordcloud.add('', all_poet,  all_num,
                    shape= random.choice(shape),
                    word_gap=20,
                    word_size_range=[10, 120],  
                    rotate_step=70)
    wordcloud.render(path=file.rstrip('.txt')+'詩人最愛用的形容詞_詞雲'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:28,代碼來源:高頻形容詞分析.py

示例14: show

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def show(data, file):
    es = pyecharts.Bar(title=file.rstrip('.txt')+'字頻', title_top=100,  width=1300, height=700,)
    flag = 1
    for title, num in data:
        if num < 10000:
            pass
        else:
            es.add(title, [flag], [num],xaxis_interval=0, yaxis_interval=0)
            flag += 1
    es.render(path=file.rstrip('.txt')+'_字頻'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:12,代碼來源:歌詞_5字頻統計+圖表展示.py

示例15: show

# 需要導入模塊: import pyecharts [as 別名]
# 或者: from pyecharts import Bar [as 別名]
def show(data, file):
    '''展示圖表'''
    all_ci = [i[0] for i in data]
    all_num = [i[1] for i in data]

    rank_bar = pyecharts.Bar('\n{}詞頻榜'.format(file.rstrip('.txt')), width=1400, height=750, title_pos='center', title_top=3)  # 初始化圖表
    # all_names是所有電影名,作為X軸, all_lovers是關注者的數量,作為Y軸。二者數據一一對應。  is_label_show=True,
    # is_convert=True設置x、y軸對調,。is_label_show=True 顯示y軸值。 label_pos='right' Y軸值顯示在右邊
    rank_bar.add('', all_ci, all_num,  label_pos='center',is_convert=True, xaxis_interval=0, yaxis_interval=0, is_yaxis_inverse=True)

    rank_bar.render(path=file.rstrip('.txt')+'_詞頻'+'.html') 
開發者ID:ZubinGou,項目名稱:AI_Poet_Totoro,代碼行數:13,代碼來源:歌詞_6詞頻分析+圖表展示.py


注:本文中的pyecharts.Bar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。