當前位置: 首頁>>代碼示例>>Python>>正文


Python pydotplus.graph_from_dot_data方法代碼示例

本文整理匯總了Python中pydotplus.graph_from_dot_data方法的典型用法代碼示例。如果您正苦於以下問題:Python pydotplus.graph_from_dot_data方法的具體用法?Python pydotplus.graph_from_dot_data怎麽用?Python pydotplus.graph_from_dot_data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pydotplus的用法示例。


在下文中一共展示了pydotplus.graph_from_dot_data方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show_pdf

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def show_pdf(clf):
    '''
    可視化輸出
    把決策樹結構寫入文件: http://sklearn.lzjqsdd.com/modules/tree.html

    Mac報錯: pydotplus.graphviz.InvocationException: GraphViz's executables not found
    解決方案: sudo brew install graphviz
    參考寫入:  http://www.jianshu.com/p/59b510bafb4d
    '''
    # with open("testResult/tree.dot", 'w') as f:
    #     from sklearn.externals.six import StringIO
    #     tree.export_graphviz(clf, out_file=f)

    import pydotplus
    from sklearn.externals.six import StringIO
    dot_data = StringIO()
    tree.export_graphviz(clf, out_file=dot_data)
    graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("../../../output/3.DecisionTree/tree.pdf")

    # from IPython.display import Image
    # Image(graph.create_png()) 
開發者ID:apachecn,項目名稱:AiLearning,代碼行數:24,代碼來源:DTSklearn.py

示例2: show_pdf

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def show_pdf(clf):
    '''
    可視化輸出
    把決策樹結構寫入文件: http://sklearn.lzjqsdd.com/modules/tree.html

    Mac報錯: pydotplus.graphviz.InvocationException: GraphViz's executables not found
    解決方案: sudo brew install graphviz
    參考寫入:  http://www.jianshu.com/p/59b510bafb4d
    '''
    # with open("testResult/tree.dot", 'w') as f:
    #     from sklearn.externals.six import StringIO
    #     tree.export_graphviz(clf, out_file=f)

    import pydotplus
    from sklearn.externals.six import StringIO
    dot_data = StringIO()
    tree.export_graphviz(clf, out_file=dot_data)
    graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("output/3.DecisionTree/tree.pdf")

    # from IPython.display import Image
    # Image(graph.create_png()) 
開發者ID:apachecn,項目名稱:AiLearning,代碼行數:24,代碼來源:DTSklearn.py

示例3: test_unicode_ids

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def test_unicode_ids(self):

        node1 = '"aánñoöüé€"'
        node2 = '"îôø®çßΩ"'

        g = pydotplus.Dot()
        g.set_charset('latin1')
        g.add_node(pydotplus.Node(node1))
        g.add_node(pydotplus.Node(node2))
        g.add_edge(pydotplus.Edge(node1, node2))

        self.assertEqual(g.get_node(node1)[0].get_name(), node1)
        self.assertEqual(g.get_node(node2)[0].get_name(), node2)

        self.assertEqual(g.get_edges()[0].get_source(), node1)
        self.assertEqual(g.get_edges()[0].get_destination(), node2)

        g2 = pydotplus.graph_from_dot_data(g.to_string())

        self.assertEqual(g2.get_node(node1)[0].get_name(), node1)
        self.assertEqual(g2.get_node(node2)[0].get_name(), node2)

        self.assertEqual(g2.get_edges()[0].get_source(), node1)
        self.assertEqual(g2.get_edges()[0].get_destination(), node2) 
開發者ID:carlos-jenkins,項目名稱:pydotplus,代碼行數:26,代碼來源:pydot_unittest.py

示例4: read_dot

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def read_dot(path):
    """Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

    Parameters
    ----------
    path : filename or file handle

    Returns
    -------
    G : NetworkX multigraph
        A MultiGraph or MultiDiGraph.

    Notes
    -----
    Use G = nx.Graph(read_dot(path)) to return a Graph instead of a MultiGraph.
    """
    import pydotplus
    data = path.read()
    P = pydotplus.graph_from_dot_data(data)
    return from_pydot(P) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:22,代碼來源:nx_pydot.py

示例5: visualize

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def visualize(tree, save_path):
    """Generate PDF of a decision tree.

    @param tree: DecisionTreeClassifier instance
    @param save_path: string 
                      where to save tree PDF
    """
    dot_data = export_graphviz(tree, out_file=None,
                               filled=True, rounded=True)
    graph = pydotplus.graph_from_dot_data(dot_data)
    graph = make_graph_minimal(graph)  # remove extra text

    if not save_path is None:
        graph.write_pdf(save_path) 
開發者ID:dtak,項目名稱:tree-regularization-public,代碼行數:16,代碼來源:train.py

示例6: test_attribute_with_implicit_value

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def test_attribute_with_implicit_value(self):

        d = 'digraph {\na -> b[label="hi", decorate];\n}'
        g = pydotplus.graph_from_dot_data(d)
        attrs = g.get_edges()[0].get_attributes()

        self.assertEqual('decorate' in attrs, True) 
開發者ID:carlos-jenkins,項目名稱:pydotplus,代碼行數:9,代碼來源:pydot_unittest.py

示例7: test_graph_with_shapefiles

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def test_graph_with_shapefiles(self):

        shapefile_dir = os.path.join(TEST_DIR, 'from-past-to-future')
        dot_file = os.path.join(shapefile_dir, 'from-past-to-future.dot')

        pngs = [
            os.path.join(shapefile_dir, fname)
            for fname in os.listdir(shapefile_dir)
            if fname.endswith('.png')
        ]

        f = open(dot_file, 'rt')
        graph_data = f.read()
        f.close()

        g = pydotplus.graph_from_dot_data(graph_data)

        g.set_shape_files(pngs)

        jpe_data = g.create(format='jpe')

        hexdigest = sha256(jpe_data).hexdigest()

        hexdigest_original = self._render_with_graphviz(dot_file)

        self.assertEqual(hexdigest, hexdigest_original) 
開發者ID:carlos-jenkins,項目名稱:pydotplus,代碼行數:28,代碼來源:pydot_unittest.py

示例8: test_multiple_graphs

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def test_multiple_graphs(self):

        graph_data = 'graph A { a->b };\ngraph B {c->d}'

        graphs = pydotplus.graph_from_dot_data(graph_data)

        self.assertEqual(len(graphs), 2)

        self.assertEqual([g.get_name() for g in graphs], ['A', 'B']) 
開發者ID:carlos-jenkins,項目名稱:pydotplus,代碼行數:11,代碼來源:pydot_unittest.py

示例9: dt_classification

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def dt_classification():
    iris = datasets.load_iris()
    X = iris.data[:, 0:2]
    y = iris.target
    
    clf = tree.DecisionTreeClassifier()
    clf.fit(X, y)
    
    dot_data = tree.export_graphviz(clf, out_file=None,
                                    feature_names=iris.feature_names,  
                                    class_names=iris.target_names,  
                                    filled=True, rounded=True,  
                                    special_characters=True
                                    )
    graph = pydotplus.graph_from_dot_data(dot_data)
    graph.write_png("./tree_iris.png")
    
    # plot result
    xmin, xmax = X[:, 0].min() - 1, X[:, 0].max() + 1
    ymin, ymax = X[:, 1].min() - 1, X[:, 1].max() + 1
    plot_step = 0.02
    xx, yy = np.meshgrid(np.arange(xmin, xmax, plot_step),
                         np.arange(ymin, ymax, plot_step))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
    
    # Plot the training points
    n_classes = 3
    plot_colors = "bry"
    for i, color in zip(range(n_classes), plot_colors):
        idx = np.where(y == i)
        plt.scatter(X[idx, 0], X[idx, 1], c=color, 
                    label=iris.target_names[i],
                    cmap=plt.cm.Paired) 
開發者ID:zlxy9892,項目名稱:ml_code,代碼行數:37,代碼來源:Decision_Tree.py

示例10: train_tree_classifer

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def train_tree_classifer(features, labels, model_output_path):
    """
    train_tree_classifer will train a DecisionTree and write it out to a pdf file

    features: 2D array of each input feature for each sample
    labels: array of string labels classifying each sample
    model_output_path: path for storing the trained tree model
    """
    # save 20% of data for performance evaluation
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(features, labels, test_size=0.2)

    param = [
        {
            "max_depth": [None, 10, 100, 1000, 10000]
        }
    ]

    dtree = tree.DecisionTreeClassifier(random_state=0)

    # 10-fold cross validation, use 4 thread as each fold and each parameter set can be train in parallel
    clf = grid_search.GridSearchCV(dtree, param,
            cv=10, n_jobs=20, verbose=3)

    clf.fit(X_train, y_train)

    if os.path.exists(model_output_path):
        joblib.dump(clf.best_estimator_, model_output_path)
    else:
        print("Cannot save trained tree model to {0}.".format(model_output_path))

    dot_data = tree.export_graphviz(clf.best_estimator_, out_file=None)
    graph = pydotplus.graph_from_dot_data(dot_data)
    graph.write_pdf('best_tree.pdf')

    print("\nBest parameters set:")
    print(clf.best_params_)

    y_predict=clf.predict(X_test)

    labels=sorted(list(set(labels)))
    print("\nConfusion matrix:")
    print("Labels: {0}\n".format(",".join(labels)))
    print(confusion_matrix(y_test, y_predict, labels=labels))

    print("\nClassification report:")
    print(classification_report(y_test, y_predict)) 
開發者ID:mwleeds,項目名稱:android-malware-analysis,代碼行數:48,代碼來源:sklearn_tree.py

示例11: pydot_layout

# 需要導入模塊: import pydotplus [as 別名]
# 或者: from pydotplus import graph_from_dot_data [as 別名]
def pydot_layout(G,prog='neato',root=None, **kwds):
    """Create node positions using Pydot and Graphviz.

    Returns a dictionary of positions keyed by node.

    Examples
    --------
    >>> G = nx.complete_graph(4)
    >>> pos = nx.nx_pydot.pydot_layout(G)
    >>> pos = nx.nx_pydot.pydot_layout(G, prog='dot')
    """
    import pydotplus
    P=to_pydot(G)
    if root is not None :
        P.set("root",make_str(root))

    D=P.create_dot(prog=prog)

    if D=="":  # no data returned
        print("Graphviz layout with %s failed"%(prog))
        print()
        print("To debug what happened try:")
        print("P=pydot_from_networkx(G)")
        print("P.write_dot(\"file.dot\")")
        print("And then run %s on file.dot"%(prog))
        return

    Q=pydotplus.graph_from_dot_data(D)

    node_pos={}
    for n in G.nodes():
        pydot_node = pydotplus.Node(make_str(n)).get_name()
        node=Q.get_node(pydot_node)

        if isinstance(node,list):
            node=node[0]
        pos=node.get_pos()[1:-1] # strip leading and trailing double quotes
        if pos != None:
            xx,yy=pos.split(",")
            node_pos[n]=(float(xx),float(yy))
    return node_pos

# fixture for nose tests 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:45,代碼來源:nx_pydot.py


注:本文中的pydotplus.graph_from_dot_data方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。