本文整理匯總了Python中pycocotools.mask.iou方法的典型用法代碼示例。如果您正苦於以下問題:Python mask.iou方法的具體用法?Python mask.iou怎麽用?Python mask.iou使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類pycocotools.mask
的用法示例。
在下文中一共展示了mask.iou方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _filter_crowd_proposals
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def _filter_crowd_proposals(roidb, crowd_thresh):
"""Finds proposals that are inside crowd regions and marks them as
overlap = -1 with each ground-truth rois, which means they will be excluded
from training.
"""
for entry in roidb:
gt_overlaps = entry['gt_overlaps'].toarray()
crowd_inds = np.where(entry['is_crowd'] == 1)[0]
non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
continue
crowd_boxes = box_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
non_gt_boxes = box_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
iscrowd_flags = [int(True)] * len(crowd_inds)
ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd_flags)
bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
gt_overlaps[non_gt_inds[bad_inds], :] = -1
entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps)
示例2: _filter_crowd_proposals
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def _filter_crowd_proposals(roidb, crowd_thresh):
"""
Finds proposals that are inside crowd regions and marks them with
overlap = -1 (for all gt rois), which means they will be excluded from
training.
"""
for ix, entry in enumerate(roidb):
overlaps = entry['gt_overlaps'].toarray()
crowd_inds = np.where(overlaps.max(axis=1) == -1)[0]
non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
continue
iscrowd = [int(True) for _ in xrange(len(crowd_inds))]
crowd_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
non_gt_boxes = ds_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd)
bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
overlaps[non_gt_inds[bad_inds], :] = -1
roidb[ix]['gt_overlaps'] = scipy.sparse.csr_matrix(overlaps)
return roidb
示例3: match_dt_gt
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def match_dt_gt(e, imgid, target_dt_boxes, gt_boxes, eval_target):
for target_class in eval_target.keys():
#if len(gt_boxes[target_class]) == 0:
# continue
target_dt_boxes[target_class].sort(key=operator.itemgetter(1), reverse=True)
d = [box for box, prob in target_dt_boxes[target_class]]
dscores = [prob for box, prob in target_dt_boxes[target_class]]
g = gt_boxes[target_class]
# len(D), len(G)
dm, gm = match_detection(d, g, cocomask.iou(
d, g, [0 for _ in range(len(g))]), iou_thres=0.5)
e[target_class][imgid] = {
"dscores": dscores,
"dm": dm,
"gt_num": len(g)}
# for activity boxes
示例4: computeIoU
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0:p.maxDets[-1]]
if p.iouType == 'segm':
g = [g['segmentation'] for g in gt]
d = [d['segmentation'] for d in dt]
elif p.iouType == 'bbox':
g = [g['bbox'] for g in gt]
d = [d['bbox'] for d in dt]
else:
raise Exception('unknown iouType for iou computation')
# compute iou between each dt and gt region
iscrowd = [int(o['iscrowd']) for o in gt]
ious = maskUtils.iou(d, g, iscrowd)
return ious
示例5: np_iou
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def np_iou(A, B):
def to_xywh(box):
box = box.copy()
box[:, 2] -= box[:, 0]
box[:, 3] -= box[:, 1]
return box
ret = iou(
to_xywh(A), to_xywh(B),
np.zeros((len(B),), dtype=np.bool))
return ret
示例6: iou
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def iou(gt, pred):
gt[gt > 0] = 1.
pred[pred > 0] = 1.
intersection = gt * pred
union = gt + pred
union[union > 0] = 1.
intersection = np.sum(intersection)
union = np.sum(union)
if union == 0:
union = 1e-09
return intersection / union
示例7: compute_ious
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def compute_ious(gt, predictions):
gt_ = get_segmentations(gt)
predictions_ = get_segmentations(predictions)
if len(gt_) == 0 and len(predictions_) == 0:
return np.ones((1, 1))
elif len(gt_) != 0 and len(predictions_) == 0:
return np.zeros((1, 1))
else:
iscrowd = [0 for _ in predictions_]
ious = cocomask.iou(gt_, predictions_, iscrowd)
if not np.array(ious).size:
ious = np.zeros((1, 1))
return ious
示例8: intersection_over_union
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def intersection_over_union(y_true, y_pred):
ious = []
for y_t, y_p in tqdm(list(zip(y_true, y_pred))):
iou = compute_ious(y_t, y_p)
iou_mean = 1.0 * np.sum(iou) / len(iou)
ious.append(iou_mean)
return np.mean(ious)
示例9: test_bbox_dataset_to_prediction_roundtrip
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def test_bbox_dataset_to_prediction_roundtrip(self):
"""Simulate the process of reading a ground-truth box from a dataset,
make predictions from proposals, convert the predictions back to the
dataset format, and then use the COCO API to compute IoU overlap between
the gt box and the predictions. These should have IoU of 1.
"""
weights = (5, 5, 10, 10)
# 1/ "read" a box from a dataset in the default (x1, y1, w, h) format
gt_xywh_box = [10, 20, 100, 150]
# 2/ convert it to our internal (x1, y1, x2, y2) format
gt_xyxy_box = box_utils.xywh_to_xyxy(gt_xywh_box)
# 3/ consider nearby proposal boxes
prop_xyxy_boxes = random_boxes(gt_xyxy_box, 10, 10)
# 4/ compute proposal-to-gt transformation deltas
deltas = box_utils.bbox_transform_inv(
prop_xyxy_boxes, np.array([gt_xyxy_box]), weights=weights
)
# 5/ use deltas to transform proposals to xyxy predicted box
pred_xyxy_boxes = box_utils.bbox_transform(
prop_xyxy_boxes, deltas, weights=weights
)
# 6/ convert xyxy predicted box to xywh predicted box
pred_xywh_boxes = box_utils.xyxy_to_xywh(pred_xyxy_boxes)
# 7/ use COCO API to compute IoU
not_crowd = [int(False)] * pred_xywh_boxes.shape[0]
ious = COCOmask.iou(pred_xywh_boxes, np.array([gt_xywh_box]), not_crowd)
np.testing.assert_array_almost_equal(ious, np.ones(ious.shape))
示例10: test_cython_bbox_iou_against_coco_api_bbox_iou
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def test_cython_bbox_iou_against_coco_api_bbox_iou(self):
"""Check that our cython implementation of bounding box IoU overlap
matches the COCO API implementation.
"""
def _do_test(b1, b2):
# Compute IoU overlap with the cython implementation
cython_iou = box_utils.bbox_overlaps(b1, b2)
# Compute IoU overlap with the COCO API implementation
# (requires converting boxes from xyxy to xywh format)
xywh_b1 = box_utils.xyxy_to_xywh(b1)
xywh_b2 = box_utils.xyxy_to_xywh(b2)
not_crowd = [int(False)] * b2.shape[0]
coco_ious = COCOmask.iou(xywh_b1, xywh_b2, not_crowd)
# IoUs should be similar
np.testing.assert_array_almost_equal(
cython_iou, coco_ious, decimal=5
)
# Test small boxes
b1 = random_boxes([10, 10, 20, 20], 5, 10)
b2 = random_boxes([10, 10, 20, 20], 5, 10)
_do_test(b1, b2)
# Test bigger boxes
b1 = random_boxes([10, 10, 110, 20], 20, 10)
b2 = random_boxes([10, 10, 110, 20], 20, 10)
_do_test(b1, b2)
示例11: calculate_association_similarities
# 需要導入模塊: from pycocotools import mask [as 別名]
# 或者: from pycocotools.mask import iou [as 別名]
def calculate_association_similarities(detections_t, last_tracks, flow_tm1_t, tracker_options):
association_similarities = np.zeros((len(detections_t), len(last_tracks)))
if tracker_options["reid_weight"] != 0:
curr_reids = np.array([x[1] for x in detections_t], dtype="float64")
last_reids = np.array([x.reid for x in last_tracks], dtype="float64")
reid_dists = cdist(curr_reids, last_reids, "euclidean")
reid_similarities = tracker_options["reid_euclidean_scale"] * \
(tracker_options["reid_euclidean_offset"] - reid_dists)
association_similarities += tracker_options["reid_weight"] * reid_similarities
if tracker_options["mask_iou_weight"] != 0:
masks_t = [v[2] for v in detections_t]
masks_tm1 = [v.mask for v in last_tracks]
masks_tm1_warped = [warp_flow(mask, flow_tm1_t) for mask in masks_tm1]
mask_ious = cocomask.iou(masks_t, masks_tm1_warped, [False] * len(masks_tm1_warped))
association_similarities += tracker_options["mask_iou_weight"] * mask_ious
if tracker_options["bbox_center_weight"] != 0:
centers_t = [v[0][0:2] + (v[0][2:4] - v[0][0:2]) / 2 for v in detections_t]
centers_tm1 = [v.box[0:2] + (v.box[2:4] - v.box[0:2]) / 2 for v in last_tracks]
box_dists = cdist(np.array(centers_t), np.array(centers_tm1), "euclidean")
box_similarities = tracker_options["box_scale"] * \
(tracker_options["box_offset"] - box_dists)
association_similarities += tracker_options["bbox_center_weight"] * box_similarities
if tracker_options["bbox_iou_weight"] != 0:
bboxes_t = [v[0] for v in detections_t]
bboxes_tm1 = [v.box for v in last_tracks]
bboxes_tm1_warped = [warp_box(box, flow_tm1_t) for box in bboxes_tm1]
bbox_ious = np.array([[bbox_iou(box1, box2) for box1 in bboxes_tm1_warped] for box2 in bboxes_t])
assert (0 <= bbox_ious).all() and (bbox_ious <= 1).all()
association_similarities += tracker_options["bbox_iou_weight"] * bbox_ious
return association_similarities